Arridge, S. R. (1999). Optical tomography in medical imaging. Inverse problems, 15(2), R41.
Arridge, S. R., Cope, M., & Delpy, D. (1992). The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis. Physics in medicine and Biology, 37(7), 1531.
Arridge, S. R., & Schweiger, M. (1995). Direct calculation of the moments of the distribution of photon time of flight in tissue with a finite-element method. Applied optics, 34(15), 2683-2687.
Boas, D., Culver, J., Stott, J., & Dunn, A. (2002). Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head. Optics express, 10(3), 159-170.
Dehghani, H., Eames, M. E., Yalavarthy, P. K., Davis, S. C., Srinivasan, S., Carpenter, C. M., . . . Paulsen, K. D. (2009). Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction. Communications in numerical methods in engineering, 25(6), 711-732.
Fang, Q. (2010). Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates. Biomedical optics express, 1(1), 165-175.
Flock, S. T., Patterson, M. S., Wilson, B. C., & Wyman, D. R. (1989). Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and comparison with diffusion theory. IEEE Transactions on Biomedical Engineering, 36(12), 1162-1168.
Guo, Z., Cai, F., & He, S. (2013). Optimization for brain activity monitoring with near infrared light in a four-layered model of the human head. Progress In Electromagnetics Research, 140, 277-295.
Martelli, F., Contini, D., Taddeucci, A., & Zaccanti, G. (1997). Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results. Applied optics, 36(19), 4600-4612.
Okada, E., & Delpy, D. T. (2003). Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer. Applied optics, 42(16), 2906-2914.
Patterson, M. S., Chance, B., & Wilson, B. C. (1989). Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties. Applied optics, 28(12), 2331-2336.
Ripoll, J., Ntziachristos, V., Culver, J. P., Pattanayak, D. N., Yodh, A. G., & Nieto-Vesperinas, M. (2001). Recovery of optical parameters in multiple-layered diffusive media: theory and experiments. JOSA A, 18(4), 821-830.
Schotland, J. C. (1997). Continuous-wave diffusion imaging. JOSA A, 14(1), 275-279.
Strangman, G., Boas, D. A., & Sutton, J. P. (2002). Non-invasive neuroimaging using near-infrared light. Biological psychiatry, 52(7), 679-693.
Takahashi, T., Takikawa, Y., Kawagoe, R., Shibuya, S., Iwano, T., & Kitazawa, S. (2011). Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task. Neuroimage, 57(3), 991-1002.
Uludağ, K., Steinbrink, J., Villringer, A., & Obrig, H. (2004). Separability and cross talk: optimizing dual wavelength combinations for near-infrared spectroscopy of the adult head. Neuroimage, 22(2), 583-589.
Villringer, A., & Chance, B. (1997). Non-invasive optical spectroscopy and imaging of human brain function. Trends in neurosciences, 20(10), 435-442.
Wang, L., Ayaz, H., Izzetoglu, M., & Onaral, B. (2017). Evaluation of light detector surface area for functional Near Infrared Spectroscopy. Computers in biology and medicine, 89, 68-75.
Wang, L., Jacques, S. L., & Zheng, L. (1995). MCML—Monte Carlo modeling of light transport in multi-layered tissues. Computer methods and programs in biomedicine, 47(2), 131-146.