This study was supported by the Russian Academy of Sciences (project 63.1).
1. Kornilova, L.N., Temnikova, V.V., Alekhina, M.I., Naumov, I.A., Borovikova, V.P., Iakushev, A.G. et. al. (2006) Effect of long-term microgravity on the vestibular function. Aviakosm Ekolog Med. 6, 12-16.
2. Edgerton, V.R., Roy, R.R., Recktenwald, M.R., Hodgson, J.A., Grindeland, R.E., Kozlovskaya, I.D. (2000). Neural and neuroendocrine adaptations to microgravity and ground-based models of microgravity. J. of Gravit. Physiol. 3, 45–52.
3. Kozlovskaya, I.B. (2017) Gravity and postural-tonic motor system, Aviakosm. Ecol. Med. 51, 5-21.
4. Lipshits, M.I., Gurfinkel', E.V., Matsakis, Y., Lestienne, F.(1993) The effect of weightlessness on sensorimotor interaction during operator activity: visual feedback. Motor response latency time. Aviakosm. Ecol. Med. 27, 22-25.
5. Baroni, G., Pedrocchi, A., Ferrigno, G., Massion, J., Pedotti, A. (1985) Static and dynamic postural control in long-term microgravity: evidence of a dual adaptation. J Appl Physiol. 1, 205-215.
6. Shpakov, A.V., Voronov, A.V., Fomina, E.V., Lysova, N. Iu., Chernova M.V, Kozlovskaya, I.B. (2013) Comparative analysis of the efficacy of different patterns of locomotion training in long-duration spaceflights based on biomechanical and electromyographical characteristics of human gait. Fiziol. Cheloveka.2, 60-69.
7. LeBlanc, A., Rowe, R., Schneider, V., Evans, H., Hedrick, T. (1995) Regional muscle loss after short duration spaceflight. Aviat Space Environ. Med. 66, 1151-1154.