This study was supported by the Italian Space Agency (project OSMA ‘Osteoporosis and Muscle Atrophy’) and the European Commission for the MYOAGE grant (no. 22 3576) funded under FP7.
Borina E, Pellegrino MA, D’Antona G & Bottinelli R (2010). Myosin and actin content of human skeletal muscle fibers following 35 days bed rest. Scand J Med Sci Sports 20, 65–73. Doi: 10.1111/j.1600-0838.2009.01029.x
Brocca L, Cannavino J, Coletto L, Biolo G, Sandri M, Bottinelli R, and Pellegrino MA (2012). The time course of the adaptations of human muscle proteome to bed rest and the underlying mechanisms. J Physiol 590.20 (2012) pp 5211–5230 5211. doi: 10.1113/jphysiol.2012.240267.
Brocca L, Longa E, Cannavino J, Seynnes O, de Vito G, McPhee J, Narici M, Pellegrino MA and Bottinelli R (2015). Human skeletal muscle fibre contractile properties and proteomic profile: adaptations to 3 weeks of unilateral lower limb suspension and active recovery. J Physiol 593.24 (2015) pp 5361–5385 5361. doi: 10.1113/JP271188.
Cannavino J, Brocca L, Sandri M, Bottinelli R, Pellegrino MA (2014). PGC1-α over-expression prevents metabolic alterations and soleus muscle atrophy in hindlimb unloaded mice. J Physiol. 15;592(20):4575-89. doi:10.1113/jphysiol.2014.275545.
Cannavino J, Brocca L, Sandri M, Grassi B, Bottinelli R, Pellegrino MA (2015). The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading. J Physiol. 593(8):1981-95. doi: 10.1113/jphysiol.2014.286740.
Crossland H, Skirrow s, Puthucheary ZA, Constantin-Teodosiu D, Greenhaff PL (2018). The impact of immobilisation and inflammation on the regulation of muscle mass and insulin resistance: different routes to similar end-points. J Physiol 2. doi: 10.1113/JP275444.
Dalla Libera L, Ravara B, Gobbo V, Tarricone E, Vitadello M, Biolo G, Vescovo G, Gorza L. (2009). A transient antioxidant stress response accompanies the onset of disuse atrophy in human skeletal muscle. J. Appl. Physiol. (1985) 107, 549–557. doi: 10.1152/japplphysiol.00280.2009
de Boer MD, Selby A, Atherton P, Smith K, Seynnes OR, Maganaris CN, Maffulli N, Movin T, Narici MV, Rennie MJ (2007). The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. J. Physiol. 585, 241–251. doi: 10.1113/jphysiol.2007.142828
Glover EI, Phillips SM, Oates BR, Tang JE, Tarnopolsky MA, Selbi A, Smith K, Rennie MJ (2008). Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. J Physiol 2008 6049-6061. doi: 10.1113/jphysiol.2008.160333.
Graham ZA, Gallagher PM, Cardozo CP (2015). Focal adhesion kinase and its role in skeletal muscle. J Muscle Res Cell Motil. 36(4-5):305-15. doi: 10.1007/s10974-015-9415-3.
Klossner S, Durieux AC, Freyssenet D & Fluck M (2009). Mechano-transduction to muscle protein synthesis is modulated by FAK. Eur. J. Appl. Physiol. 106, 389–398. doi: 10.1007/s00421-009-1032-7
Pellegrino MA, Desaphy JF, Brocca L, Pierno S, Camerino DC, Bottinelli R (2011). Redox homeostasis, oxidative stress and disuse muscle atrophy. J Physiol. 1;589(Pt 9):2147-60. doi: 10.1113/jphysiol.2010.203232.
Phillips SM and McGlory C (2014). The Journal of Physiology CrossTalk proposal: The dominant mechanism causing disuse muscle atrophy is decreased protein synthesis. J Physiol 592.24: 5341–5343. doi: 10.1113/jphysiol.2014.273615.
Powers SK, Kavazis AN & DeRuisseau KC (2005). Mechanisms of disuse muscle atrophy: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol 288, R337–344. doi: 10.1152/ajpregu.00469.2004.
Rittweger J, Albracht K, Flück M, Ruoss S, Brocca L, Longa E, Moriggi M, Seynnes O, Di Giulio I, Tenori L, Vignoli A, Capri M, Gelfi C, Luchinat C, Francheschi C, Bottinelli R, Cerretelli P and Narici M (2018). Sarcolab pilot study into skeletal muscle’s adaptation to longterm spaceflight npj Microgravity 4:18 ; doi:10.1038/s41526-018-0052-1.
Rudrappa SS, Wilkinson DJ, Greenhaff PL, Smith K, Idris I, Atherton PJ (2016). Human Skeletal Muscle Disuse Atrophy: Effects on Muscle Protein Synthesis, Breakdown, and Insulin Resistance-A Qualitative Review. Front Physiol. 25;7:361. doi: 10.3389/fphys.2016.00361.
Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM (2006). PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A. 103(44):16260-5. doi: 10.1073/pnas.0607795103
Suetta C, Frandsen U, Jensen L, Jensen MM, Jespersen JG, Hvid LG, Bayer M, Petersson SJ, Schrøder HD, Andersen JL, Heinemeier KM, Aagaard P, Schjerling P, Kjaer M (2012). Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy. PLoS One. 7(12):e51238. doi: 10.1371/journal.pone.0051238.
Thomason DB & Booth FW (1990). Atrophy of the soleus muscle by hindlimb unweighting. J Appl Physiol 68,1–12. doi:10.1152/jappl.1990.68.1.1.
Trappe S, Trappe T, Gallagher P, Harber M, Alkner B, Tesch P (2004). Human single muscle fibre function with 84 day bed-rest and resistance exercise. J Physiol. 1; 557(Pt 2): 501–513. doi: 10.1113/jphysiol.2004.062166