The work was performed according to the Plan for Fundamental research of SRC RF -Institute for Biomedical Problems RAS and was partially supported by the Russian Science Foundation (grant 17-15-01433).
Bauersachs, J., Popp, R., Hecker, M., Sauer, E., Fleming, I., and Busse, R. (1996). Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor. Circulation 94, 3341–7. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8989149.
Delp, M. D., Charvat, J. M., Limoli, C. L., Globus, R. K., and Ghosh, P. (2016). Apollo Lunar Astronauts Show Higher Cardiovascular Disease Mortality: Possible Deep Space Radiation Effects on the Vascular Endothelium. Sci. Rep. 6, 29901. doi:10.1038/srep29901.
Ghosh, P., Behnke, B. J., Stabley, J. N., Kilar, C. R., Park, Y., Narayanan, A., et al. (2016). Effects of High-LET Radiation Exposure and Hindlimb Unloading on Skeletal Muscle Resistance Artery Vasomotor Properties and Cancellous Bone Microarchitecture in Mice. Radiat. Res. 185, 257–266. doi:10.1667/RR4308.1.
Hill, C. E., Hickey, H., and Sandow, S. L. (2000). Role of gap junctions in acetylcholine-induced vasodilation of proximal and distal arteries of the rat mesentery. J. Auton. Nerv. Syst. 81, 122–7. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10869710.
Kostyunina, D., Shvetsova, A., Gaynullina, D., and Tarasova, O. (2016). The role of inwardly rectifying potassium channels in the relaxation of rat hind-limb arteries. Biophys. (Russian Fed. 61. doi:10.1134/S0006350916050146.
Mulvany, M. J., and Halpern, W. (1977). Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ. Res. 41, 19–26. Available at: http://www.ncbi.nlm.nih.gov/pubmed/862138.
Prisby, R. D., Wilkerson, M. K., Sokoya, E. M., Bryan, R. M., Wilson, E., and Delp, M. D. (2006). Endothelium-dependent vasodilation of cerebral arteries is altered with simulated microgravity through nitric oxide synthase and EDHF mechanisms. J. Appl. Physiol. 101, 348–53. doi:10.1152/japplphysiol.00941.2005.
Sofronova, S. I., Tarasova, O. S., Gaynullina, D., Borzykh, A. A., Behnke, B. J., Stabley, J. N., et al. (2015). Spaceflight on the Bion-M1 Biosatellite Alters Cerebral Artery Vasomotor and Mechanical Properties in Mice. J. Appl. Physiol. 118, 830–838. doi:10.1152/japplphysiol.00976.2014.
Tarasova, O. S., Sofronova, S. I., Borzykh, A. A., Gaynullina, D. K., Vinogradova, O. L., and Delp, M. D. (2016). “Influence of space flight conditions on vasomotor reactions of small arteries of different organs,” in Space scientific project “Bion-M1” biomedical experiments and research (Moscow: SRC RF - IMBP RAS), 310–317.
Toth, P., Rozsa, B., Springo, Z., Doczi, T., and Koller, A. (2011). Isolated human and rat cerebral arteries constrict to increases in flow: role of 20-HETE and TP receptors. J. Cereb. Blood Flow Metab. 31, 2096–105. doi:10.1038/jcbfm.2011.74.
Triggle, C. R., Samuel, S. M., Ravishankar, S., Marei, I., Arunachalam, G., and Ding, H. (2012). The endothelium: influencing vascular smooth muscle in many ways. Can. J. Physiol. Pharmacol. 90, 713–38. doi:10.1139/y2012-073.
Vanhoutte, P. M., Zhao, Y., Xu, A., and Leung, S. W. S. (2016). Thirty Years of Saying NO. Circ. Res. 119, 375–396. doi:10.1161/CIRCRESAHA.116.306531.
Zhang, L.-F. (2013). Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment. Eur. J. Appl. Physiol. 113, 2873–95. doi:10.1007/s00421-013-2597-8.
Zhang, L.-F., and Hargens, A. R. (2018). Spaceflight-Induced Intracranial Hypertension and Visual Impairment: Pathophysiology and Countermeasures. Physiol. Rev. 98, 59–87. doi:10.1152/physrev.00017.2016.