This study had the support of Fundação para a Ciência e Tecnologia (FCT), through the strategic project UID/MAR/04292/2013 granted to MARE.
Carvalho, A. P., Meireles, L. A., & Malcata, F. X. (2006). Microalgal Reactors: A Review of Enclosed System Designs and Performances. Biotechnology Progress, 22(6), 1490–1506. https://doi.org/10.1021/bp060065r
Camerini, F., de Morais, M. G., da Silva Vaz, B., de Morais, E. G., & Costa, J. A. V. (2016). Biofixation of CO2 on a pilot scale: Scaling of the process for industrial application. African Journal of Microbiology Research, 10(21), 768-774.
Çelekli, A., Topyürek, A., Markou, G., & Bozkurt, H. (2016). A Multivariate Approach to Evaluate Biomass Production, Biochemical Composition and Stress Compounds of Spirulina platensis Cultivated in Wastewater. Applied biochemistry and biotechnology, 180(4), 728-739.
Chen, J., et al., 2016, Microalgal industry in China: challenges and prospects, J Appl Phycol DOI 10.1007/s10811-015-0720-4.
de Morais, M. G., da Silva, C. K., Henrard, A. A., & Costa, J. A. V. (2015). Carbon dioxide mitigation by microalga in a vertical tubular reactor with recycling of the culture medium. African Journal of Microbiology Research, 9(33), 1935-1940.
Delrue, F., Alaux, E., Moudjaoui, L., Gaignard, C., Fleury, G., Perilhou, A., ... & Sassi, J. F. (2017). Optimization of Arthrospira platensis (Spirulina) Growth: From Laboratory Scale to Pilot Scale. Fermentation, 3(4), 59.
Falaise, C., François, C., Travers, M. A., Morga, B., Haure, J., Tremblay, R., ... & Leignel, V. (2016). Antimicrobial Compounds from Eukaryotic Microalgae against Human Pathogens and Diseases in Aquaculture. Marine Drugs, 14(9), 159.
Linares, L. C. F., Falfán, K. Á. G., & Ramírez-López, C. (2017). Microalgal Biomass: A Biorefinery Approach. In Biomass Volume Estimation and Valorization for Energy. InTech. https://www.intechopen.com/books/biomass-volume-estimation-and-valorization-for-energy/microalgal-biomass-a-biorefinery-approach
Markou, G., Mitrogiannis, D., Çelekli, A., Bozkurt, H., Georgakakis, D., & Chrysikopoulos, C. V. (2015). Biosorption of Cu 2+ and Ni 2+ by Arthrospira platensis with different biochemical compositions. Chemical Engineering Journal, 259, 806-813.
Ruiz, J., Olivieri, G., et al., 2016, Towards industrial products from microalgae, Energy Environ. Sci., 9, 3036, http://pubs.rsc.org/en/content/articlepdf/2016/EE/C6EE01493C
Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of bioscience and bioengineering, 101(2), 87-96. http://oatao.univ-toulouse.fr/2771/1/joannis-cassan_2771.pdf
Vonshak, A. (Ed.). (1997). Spirulina platensis arthrospira: physiology, cell-biology and biotechnology. CRC Press.
Zarrouk, C., (1966), Contribution a l’etude d’une cyanobacterie: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. PhD thesis, University of Paris, France.