Event Abstract

Decoding Neural Representations of Rules and Rule Order

  • 1 Charité-Universitätsmedizin, Bernstein Center for Computational Neuroscience, Germany
  • 2 Max Planck Institute for Cognitive and Brain Sciences, MPI, Germany

Conditional rules of the form "if x then y" are of vital importance for our everyday life. Recent research has started to investigate the neural substrate underlying conditional rule processing. A critical aspect of rule processing that has so far been neglected is that many situations require the rules to be executed in a specific order. For example, it might be wise to apply the rule “If you don't have any money, go to the ATM machine” BEFORE the rule “If you want ice-cream, go to the ice-cream shop”, instead of applying them vice versa.

Here, we present the results from a functional magnetic resonance imaging (fMRI) study in which we successfully decoded the identity of two simultaneously active rules as well as their application order from local patterns of fMRI data. A modified cued task-switching paradigm was administered during fMRI scanning. Participants were required to retrieve, maintain, and apply two conditional rules (e.g. “First, if there is a musical instrument, press left. Second, if there is a food item, press right”) to a set of target stimuli. We identified regions containing representations of rule identity and application order by applying multivariate pattern classifiers on local patterns of activation during the delay period between cue presentation and task execution. Using a redundant coding scheme for the rules (each rule was alternatively represented by one of two visual cues in different trials), we were able to disentangle representations of rules and representations of visual features of the cue.

Representations of rule identity were found in bilateral supero-lateral parietal cortices, right dorso-lateral prefrontal cortex (dlPFC), and right anterior cingulate cortex (ACC). Representations of application order were found in bilateral supero-lateral parietal cortices and right ACC. In ACC, we found an overlap between regions that contained representations of rules and rule order. In contrast, a dissociation between both regions was found in supero-lateral parietal cortices, as well as in lateral PFC (where only representations of rules but not of rule order were found).
The locations of rule identity representations fit well with recent findings by Reverberi & Haynes [1]. The finding that regions containing representations of rule and rule order were dissociated in some regions suggests that both features of rule processing are handled in different ways by the brain.

In conclusion, we were able to successfully localize representations of two defining features of complex rule sets, namely rule identity and rule order. Additionally, we found evidence that the brain treats these two types of information in different ways.

References

[1] Reverberi, C. and Haynes, J. D. (in prep). Neural representation of conditional rules: Compositionality of the neural code.

Keywords: computational neuroscience

Conference: Bernstein Conference on Computational Neuroscience, Berlin, Germany, 27 Sep - 1 Oct, 2010.

Presentation Type: Poster Abstract

Topic: Bernstein Conference on Computational Neuroscience

Citation: Görgen K, Reverberi C and Haynes J (2010). Decoding Neural Representations of Rules and Rule Order. Front. Comput. Neurosci. Conference Abstract: Bernstein Conference on Computational Neuroscience. doi: 10.3389/conf.fncom.2010.51.00025

Copyright: The abstracts in this collection have not been subject to any Frontiers peer review or checks, and are not endorsed by Frontiers. They are made available through the Frontiers publishing platform as a service to conference organizers and presenters.

The copyright in the individual abstracts is owned by the author of each abstract or his/her employer unless otherwise stated.

Each abstract, as well as the collection of abstracts, are published under a Creative Commons CC-BY 4.0 (attribution) licence (https://creativecommons.org/licenses/by/4.0/) and may thus be reproduced, translated, adapted and be the subject of derivative works provided the authors and Frontiers are attributed.

For Frontiers’ terms and conditions please see https://www.frontiersin.org/legal/terms-and-conditions.

Received: 20 Sep 2010; Published Online: 23 Sep 2010.

* Correspondence: Dr. Carlo Reverberi, Charité-Universitätsmedizin, Bernstein Center for Computational Neuroscience, Berlin, Germany, carlo.reverberi@unimib.it