This abstract is based on joint work with Sven Dähne, Duncan Blythe, Wojciech Samek, Motoaki Kawanabe, Frank Meinecke, Benjamin Blankertz, Gabriel Curio, Michael Tangermann, Carmen Vidaurre, Paul von Bünau, Felix Biessmann, Siamac Fazli and many other members of the Berlin Brain Computer Interface team as well on joint work with No-Sang Kwak and Seong-Whan Lee. We greatly acknowledge funding by BMBF, EU, DFG and NRF.
Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., & Muller, K. R. (2008). Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Processing Magazine, 25(1), 41-56.
Blankertz, B., Lemm, S., Treder, M., Haufe, S., & Müller, K. R. (2011). Single-trial analysis and classification of ERP components—a tutorial. NeuroImage, 56(2), 814-825.
Biessmann, F., Meinecke, F. C., Gretton, A., Rauch, A., Rainer, G., Logothetis, N. K., & Müller, K. R., Temporal kernel CCA and its application in multimodal neuronal data analysis. Machine Learning, 79(1-2), 5-27 (2010)
Biessmann, F. Plis, S., Meinecke, F.C., Eichele, T., Müller, K.-R., Analysis of Neuroimaging Data, IEEE Rev Biomed Eng. 4, 26-58 (2011)
Blankertz, B., Lemm, S., Treder, M., Haufe, S., Müller, K.-R., Single-trial analysis and classifcation of ERP components - A tutorial, Neuroimage, 56 (2), 814-825 (2011)
Blythe, D. A., Haufe, S., Müller, K. R., Nikulin, V. V., The effect of linear mixing in the EEG on Hurst exponent estimation, NeuroImage, 99, 377-387 (2014).
von Bünau, P., Meinecke, F. C., Király, F. C., & Müller, K. R. (2009). Finding stationary subspaces in multivariate time series. Physical Review Letters, 103(21), 214101.
Dähne, S., Biessmann, F., Meinecke F.C., Mehnert, J., Fazli S, Müller, K.-R., Integration of Multivariate Data Streams with Bandpower Signals, IEEE T Multimedia, 15(5), 1001-13 (2013)
Dähne, S., Meinecke F.C., Haufe, S., Höhne, J. Tangermann, M., Müller, K.-R., Nikulin, V.V., SPoC: A novel framework for relating the amplitude of neural oscillations to behaviorally relevant parameters, Neuroimage, 86(1) 111-122 (2014a)
Dähne, S., Nikulin, V. V., Ramírez, D., Schreier, P. J., Müller, K. R., Haufe, S., Finding brain oscillations with power dependencies in neuroimaging data. NeuroImage, 96, 334-348 (2014b)
Dähne, S., Bießman, F., Samek, W., Haufe, S., Goltz, D., Gundlach, C., Villringer, A., Fazli, S., and Müller, K.-R., Multivariate machine learning methods for fusing functional multimodal neuroimaging data. Proceedings of the IEEE, 103(9), 1507 – 1530 (2015)
Fazli, S., Popescu, F., Danoczy, M., Blankertz, B., Müller, K.-R., Grozea, C., Subject independent mental state classification in single trials, Neural Netw., 22(9), 1305-1312 (2009)
Fazli, S., Danoczy, M., Schelldorfer, J., Müller, K.-R., L1-penalized Models for high dimensional data with application to BCI, NeuroImage, 56(4), 2100-2108 (2011)
Fazli, S., Mehnert, J., Curio, G., Villringer, A., Müller, K.-R., Steinbrink, J., Blankertz, B., Enhanced performance by a Hybrid NIRS-EEG Brain Computer Interface, NeuroImage, 59(1), 519-529 (2012)
Fazli, S.; Dahne, S.; Samek, W.; Bießmann, F.; Müller, K.-R., Learning from more than one Data Source: Data Fusion Techniques for Sensorimotor Rhythm-Based Brain–Computer Interfaces, Proceedings of the IEEE, 103(6), 891 – 906 (2015)
Kwak NS, Müller, K.-R., Lee SW, A lower limb exoskeleton control system based on steady state visual evoked potentials, J Neural Eng;12(5):056009 (2015)
Lemm, S., Dickhaus, T., Blankertz, B., Müller, K.-R., Introduction to Machine Learning for Brain Imaging, Neuroimage, 56 (2), 387-399 (2011)
Müller KR, Tangermann M, Dornhege G, Krauledat M, Curio G, Blankertz B, Machine learning for real-time single-trial EEG analysis: From brain-computer interfacing to mental state monitoring, J Neurosci Meth 167, 82-90 (2008)
Müller-Putz, G., Leeb, R., Tangermann, M., Höhne, J., Kübler, A., Cincotti, F., Mattia, D., Rupp, R., Müller, K.-R., Millan, J.d.R., Towards Noninvasive Hybrid Brain–Computer Interfaces: Framework, Practice, Clinical Application, and Beyond, Proceedings of the IEEE, 103(6), 926-943 (2015)
Pfurtscheller, G, et al., The hybrid BCI, Frontiers in neuroscience 4 (2010).
Samek, W., Kawanabe, M., Müller, K.-R., Divergence based framework for Common Spacial Patterns Algorithms, IEEE Reviews in Biomedical Eng., 7, 50-72 (2014)
Sui, J., Adali, T., Yu, Q., Chen, J., & Calhoun, V. D., A review of multivariate methods for multimodal fusion of brain imaging data. Journal of neuroscience methods, 204(1), 68-81 (2012)
Tomioka, R., Müller, K. R., A regularized discriminative framework for EEG analysis with application to brain–computer interface. NeuroImage, 49(1), 415-432 (2010)
Waltz, E, Llinas, J, Multisensor data fusion (Vol. 685). Boston: Artech house . (1990)
Porbadnigk, A.K., Görnitz, N., Sannelli, C., Binder, A., Braun, M., Kloft, M., Müller, K.-R., Extracting latent brain states — Towards true labels in cognitive neuroscience experiments, NeuroImage 120, 225–253 (2015)
Winkler, I., Haufe, S., Porbadnigk, A.K., Muller, KR, Dähne, S., Identifying Granger causal relationships between neural power dynamics and variables of interest NeuroImage 111, 489–504 (2015)