MS is funded by ESRC DTP studentship and a Wilfrid Knapp Science Scholarship. GB is supported by Baily Thomas Charitable Trust.
Andrews, T. J., & Ewbank, M. P. (2004). Distinct representations for facial identity and changeable aspects of faces in the human temporal lobe. Neuroimage, 23(3), 905-913.
Avidan, G., Tanzer, M., Hadj-Bouziane, F., Liu, N., Ungerleider, L. G., & Behrmann, M. (2013). Selective dissociation between core and extended regions of the face processing network in congenital prosopagnosia. Cerebral Cortex, 24(6), 1565-1578.
Baseler, H. A., Young, A. W., Jenkins, R., Burton, A. M., & Andrews, T. J. (2016). Face-selective regions show invariance to linear, but not to non-linear, changes in facial images. Neuropsychologia, 93, 76-84.
Bruce, V., & Young, A. (1986). Understanding face recognition. British journal of psychology, 77(3), 305-327.
Coll, M. P., Murphy, J., Catmur, C., Bird, G., Brewer, R., & Oxford, O. (2018). The importance of stimulus variability when studying face processing using Fast Periodic Visual Stimulation: A novel ‘Mixed-Emotions’ paradigm. PsyArXiv. November, 9.
Ewbank, M. P., Smith, W. A., Hancock, E. R., & Andrews, T. J. (2007). The M170 reflects a viewpoint-dependent representation for both familiar and unfamiliar faces. Cerebral Cortex, 18(2), 364-370.
Fox, C. J., Hanif, H. M., Iaria, G., Duchaine, B. C., & Barton, J. J. (2011). Perceptual and anatomic patterns of selective deficits in facial identity and expression processing. Neuropsychologia, 49(12), 3188-3200.
Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: neural models of stimulus-specific effects. Trends in cognitive sciences, 10(1), 14-23.
Henson, R. N. A., Shallice, T., Gorno-Tempini, M. L., & Dolan, R. J. (2002). Face repetition effects in implicit and explicit memory tests as measured by fMRI. Cerebral Cortex, 12(2), 178-186.
Henson, R. N., Rylands, A., Ross, E., Vuilleumeir, P., & Rugg, M. D. (2004). The effect of repetition lag on electrophysiological and haemodynamic correlates of visual object priming. Neuroimage, 21(4), 1674-1689.
Liu-Shuang, J., Torfs, K., & Rossion, B. (2016). An objective electrophysiological marker of face individualisation impairment in acquired prosopagnosia with fast periodic visual stimulation. Neuropsychologia, 83, 100–113.
Minnebusch, D. A., Suchan, B., Ramon, M., & Daum, I. (2007). Event‐related potentials reflect heterogeneity of developmental prosopagnosia. European Journal of Neuroscience, 25(7), 2234-2247.
Rossion, B. (2014). Understanding individual face discrimination by means of fast periodic visual stimulation. Experimental brain research, 232(6), 1599-1621.
Valentine, T. (1991). A unified account of the effects of distinctiveness, inversion, and race in face recognition. The Quarterly Journal of Experimental Psychology Section A, 43(2), 161-204.
Wojciulik, E., Kanwisher, N., & Driver, J. (1998). Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. Journal of Neurophysiology, 79(3), 1574-1578.
Xu, B., Liu-Shuang, J., Rossion, B., & Tanaka, J. (2017). Individual Differences in Face Identity Processing with Fast Periodic Visual Stimulation. Journal of Cognitive Neuroscience, 29(8), 1368–1377.
Figure 1. Alternative explanations for repetition suppression. Traditional explanation of repetition suppression (in green) poses that reduction in neural signal on repeat trials is caused by increased network efficiency for neural units involved in processing of the repeated stimulus. An alternative explanation (in blue) suggests that change detection on non-repeat trials causes a modulation of attention to the novel stimulus, thereby increasing neural signal. As can be seen from the top panel, the modulation of neural signal (the only parameter typically measured) is indistinguishable between these explanations.