[1] Alluri V, Toiviainen P, Jääskeläinen IP, Glerean E, Sams M, Brattico E., Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. Neuroimage (2012) 59(4):3677–89. doi: 10.1016/j.neuroimage.2011.11.019
[2] Naselaris, T., Kay, K.N., Nishimoto, S., Gallant, J.L., Encoding and decoding in fMRI. NeuroImage (2011) 56 (2), 400–410. doi: 10.1016/j.neuroimage.2010.07.073
[3] Toiviainen, P., Alluri, V., Brattico, E., Wallentin, M., Vuust, P., Capturing the musical brain with Lasso: Dynamic decoding of musical features from fMRI data. Neuroimage (2014) 88:170-180. doi:10.1016/j.neuroimage.2013.11.017
[4] Burunat I, Brattico E, Puoliväli T, Ristaniemi T, Sams M, Toiviainen P., Action in Perception: Prominent Visuo-Motor Functional Symmetry in Musicians during Music Listening. PLoS ONE (2015) 10(9). doi: 10.1371/journal.pone.0138238
[5] Rosa M.J., Portugal L., Hahn T., Fallgatter A.J., Garrido M.I., Shawe-Taylor J., Mourao-Miranda J. Sparse network-based models for patient classification using fMRI. Neuroimage (2015) 105:493-506. doi: 10.1016/j.neuroimage.2014.11.021
[6] Lartillot, O., Toiviainen, P., MIR in Matlab (II): a toolbox for musical feature extraction from audio. Proceedings of 8th International Conference on Music Information Retrieval (2007) (Available online at http://ismir2007.ismir.net/proceedings/ISMIR2007_p127_lartillot.pdf).
[7] Smith, S.M., Hyvärinen, A., Varoquaux, G., Miller, K.L., Beckmann, C.F., Group-PCA for very large fMRI datasets. Neuroimage (2014) 101:738–749. doi: 10.1016/j.neuroimage.2014.07.051