Pediatric CNS Pathophysiology
-
1
The Mind Research Network, United States
-
2
University of Oxford, United Kingdom
-
3
Aston University, United Kingdom
-
4
Simon Fraser University, Canada
-
5
Children's Hospital of Philadelphia, United States
-
6
Down Syndrome Research Foundation, Canada
Research in pediatric central nervous system pathophysiology is focused around three primary goals: identification of neurodevelopmental disorders, understanding the differences in brain development which underlie these disorders, and improving treatment for these young children. Autism spectrum disorders (ASDs) are a complex set of disorders which are characterized by difficulties in language and social interactions. These behavioral measures are highly variable and a number of underlying causes can generate similar behavioral effects. Therefore, it is important to identify neurophysiological markers to better identify and characterize these disorders. Recent ASD findings using MEG show atypical latency and amplitude responses and poor cortical connectivity in children with ASDs across the cognitive spectrum from basic auditory processing, multisensory integration, to face and semantic processing. These results further support the view that ASDs are a complex neurologically-based disorder. On the other hand, the cause of Down syndrome is well understood as originating from a partial or full replication of chromosome 21. However, the cognitive and neurological consequences of this chromosomal abnormality are not yet well understood. Using a simple observation and motor execution task, poor functional connectivity in sensory-motor areas, particularly in the gamma band range, has been identified in children with Down syndrome and is consistent with behavioral deficits in the sensory-motor realm. Additional studies are needed to better understand whether targeted identification of these abnormalities can facilitate treatment in this disorder. Finally, while epilepsy can be reliably diagnosed, seizure control is still limited in many cases where the seizure onset zone is not readily apparent. Advances in pre-surgical evaluation and intra-operative co-registration will be described. These studies describing pediatric CNS pathophysiology will be discussed.
Conference:
Biomag 2010 - 17th International Conference on Biomagnetism , Dubrovnik, Croatia, 28 Mar - 1 Apr, 2010.
Presentation Type:
Oral Presentation
Topic:
MEG: Clinical applications
Citation:
Stephen
J,
Braeutigam
S,
Furlong
P,
Ribary
U,
Roberts
T and
Virji-Babul
N
(2010). Pediatric CNS Pathophysiology.
Front. Neurosci.
Conference Abstract:
Biomag 2010 - 17th International Conference on Biomagnetism .
doi: 10.3389/conf.fnins.2010.06.00263
Copyright:
The abstracts in this collection have not been subject to any Frontiers peer review or checks, and are not endorsed by Frontiers.
They are made available through the Frontiers publishing platform as a service to conference organizers and presenters.
The copyright in the individual abstracts is owned by the author of each abstract or his/her employer unless otherwise stated.
Each abstract, as well as the collection of abstracts, are published under a Creative Commons CC-BY 4.0 (attribution) licence (https://creativecommons.org/licenses/by/4.0/) and may thus be reproduced, translated, adapted and be the subject of derivative works provided the authors and Frontiers are attributed.
For Frontiers’ terms and conditions please see https://www.frontiersin.org/legal/terms-and-conditions.
Received:
01 Apr 2010;
Published Online:
01 Apr 2010.
*
Correspondence:
Julia Stephen, The Mind Research Network, Albuquerque, United States, jstephen@mrn.org