References:
1. Mercuri E, Bertini E, Messina S, Solari A, D'Amico A, Angelozzi C, et al. Randomized, double-blind, placebo-controlled trial of phenylbutyrate in spinal muscular atrophy. Neurology. 2007;68(1):51-5.
2. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80(1):155-65.
3. Lorson CL, Rindt H, Shababi M. Spinal muscular atrophy: mechanisms and therapeutic strategies. Human molecular genetics. 2010;19(R1):R111-8.
4. Faraz Tariq Farooq MHa, MacKenzie A. Spinal Muscular Atrophy: Classification, Diagnosis, Background, Molecular Mechanism and Development of Therapeutics. In: Kishore DU, editor. Neurodegenerative Diseases: InTech; 2013. p. 561-79.
5. Faraz Farooq AM. Current and emerging treatment options for spinal muscular atrophy. Degenerative Neurological and Neuromuscular Disease. 2015;5:75-81.
6. Farooq F, Molina FA, Hadwen J, MacKenzie D, Witherspoon L, Osmond M, et al. Prolactin increases SMN expression and survival in a mouse model of severe spinal muscular atrophy via the STAT5 pathway. The Journal of clinical investigation. 2011, 121(8):3042-50.
7. Farooq F, Balabanian S, Liu X, Holcik M, MacKenzie A. p38 Mitogen-activated protein kinase stabilizes SMN mRNA through RNA binding protein HuR. Human molecular genetics. 2009;18(21):4035-45.
8. Farooq F, Abadia-Molina F, MacKenzie D, Hadwen J, Shamim F, O'Reilly S, et al. Celecoxib increases SMN and survival in a severe spinal muscular atrophy mouse model via p38 pathway activation. Hum Mol Genet. 2013;22(17):3415-24.
9. Duncan MacKenzie FS, Kevin Mongeon, Ankur Trivedi, Alex MacKenzie and Faraz Farooq. Human Growth Hormone Increases SMN Expression and Survival in Severe Spinal Muscular Atrophy Mouse Model. Journal of Neuromuscular Diseases 2014;1(1):65-74.
10. Hadwen J, MacKenzie D, Shamim F, Mongeon K, Holcik M, MacKenzie A, et al. VPAC2 receptor agonist BAY 55-9837 increases SMN protein levels and moderates disease phenotype in severe spinal muscular atrophy mouse models. Orphanet J Rare Dis. 2014;9:4.
11. Feldkotter M, Schwarzer V, Wirth R, Wienker TF, Wirth B. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. American Journal of Human Genetics. 2002;70(2):358-68.
12. Ogino S, Leonard DG, Rennert H, Ewens WJ, Wilson RB. Genetic risk assessment in carrier testing for spinal muscular atrophy. American Journal of Medical Genetics. 2002;110(4):301-7.
13. Ogino S, Wilson RB, Gold B. New insights on the evolution of the SMN1 and SMN2 region: simulation and meta-analysis for allele and haplotype frequency calculations. European journal of human genetics : EJHG. 2004;12(12):1015-23.
14. Pearn J. Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy. Journal of medical genetics. 1978;15(6):409-13.
15. Roberts DF, Chavez J, Court SD. The genetic component in child mortality. Arch Dis Child. 1970;45(239):33-8.
16. Sugarman EA, Nagan N, Zhu H, Akmaev VR, Zhou Z, Rohlfs EM, et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72,400 specimens. European journal of human genetics : EJHG. 2012 20(1):27-32.