Event Abstract

Swelling kinetic study of poly(methyl vinyl ether-co-maleic acid) hydrogels as vehicle candidates for drug delivery

  • 1 Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
  • 2 Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
  • 3 Faculty of Pharmacy, National University of Malaysia, Malaysia

Background Hydrogels have been widely used for various biomedical and pharmaceutical applications due to their biocompatibility, high water content and rubbery nature, which resemble natural tissue. Polyethylene glycol (PEG) crosslinked poly(methyl vinyl ether and maleic acid) (PMVE/MA) hydrogel is widely studied as a vehicle for various types of drug delivery. It has been reported that swelling and diffusion property of hydrogel are important features for their effectiveness. Higher swelling of PMVE/MA hydrogel facilitates greater amount of drug to be delivered. However, delivery of high molecular weight drugs such as ovalbumin and bevacizumab is still a challenge with existing formulation of PMVE/MA hydrogels. This study aims to optimise PMVE/MA hydrogel formulations and determine the swelling kinetics of different hydrogel formulations. Methods PMVE/MA hydrogels were prepared by inducing esterification reaction with PEG. Each formulation of hydrogel consists of different concentration and molecular mass of PMVE/MA and PEG. Swelling kinetics of each formulation were studied by calculating % swelling and second order kinetic model was used to calculate the swelling rate constant (Ks) and degree of swelling at equilibrium (Seq). The effect of different foaming agents (Na2CO3 and NaHCO3) on the swelling of hydrogel was also studied. Results Our results shows that hydrogels synthesised from higher molecular weight 15% (w/w) PMVE/MA and 7.5 % (w/w) PEG 12,000 have 2200% swelling. The swelling of hydrogel decreased with increasing concentrations of PMVE/MA and PEG. Hydrogel mixture containing PEG 12,000 with longer polymer chains resulted in better swelling compared to PEG 10,000. Meanwhile high concentration of foaming agents (up to 3% w/w) has a positive effect on hydrogel swelling. Conclusion The hydrogels formulation containing 15% (w/w) PMVE/MA and 7.5 % (w/w) PEG 12,000 in this study yielded 1.28 times greater swelling compared to previously reported formulation. It is proposed that, this hydrogel would serve as a better vehicle candidate for macromolecular drug delivery.

Keywords: Hydrogel, Poly(ethylene glycol), Swelling kinetic, Drug delivery, poly(methyl vinyl ether and maleic acid)

Conference: International Conference on Drug Discovery and Translational Medicine 2018 (ICDDTM '18) “Seizing Opportunities and Addressing Challenges of Precision Medicine”, Putrajaya, Malaysia, 3 Dec - 5 Feb, 2019.

Presentation Type: Poster Presentation

Topic: Miscellaneous

Citation: Chandran R, Mohd. Tohit E, Ahmad M, Tuan Mahmood T and Stanslas J (2019). Swelling kinetic study of poly(methyl vinyl ether-co-maleic acid) hydrogels as vehicle candidates for drug delivery. Front. Pharmacol. Conference Abstract: International Conference on Drug Discovery and Translational Medicine 2018 (ICDDTM '18) “Seizing Opportunities and Addressing Challenges of Precision Medicine”. doi: 10.3389/conf.fphar.2018.63.00053

Copyright: The abstracts in this collection have not been subject to any Frontiers peer review or checks, and are not endorsed by Frontiers. They are made available through the Frontiers publishing platform as a service to conference organizers and presenters.

The copyright in the individual abstracts is owned by the author of each abstract or his/her employer unless otherwise stated.

Each abstract, as well as the collection of abstracts, are published under a Creative Commons CC-BY 4.0 (attribution) licence (https://creativecommons.org/licenses/by/4.0/) and may thus be reproduced, translated, adapted and be the subject of derivative works provided the authors and Frontiers are attributed.

For Frontiers’ terms and conditions please see https://www.frontiersin.org/legal/terms-and-conditions.

Received: 30 Sep 2018; Published Online: 17 Jan 2019.

* Correspondence: Dr. Eusni Mohd. Tohit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor Daruh Ehsan, Selangor, 43400, Malaysia, eusni@upm.edu.my