This study was, in part, supported by the Grant-in-Aid for Scientific Research (B, JP17H03193, N.T.) from Japan Society for the Promotion of Science.
[1] Donald, H. (1969). Reduced-gravity simulators for studies of man’s mobility in space and on the moon. J. Human Factors Society 11 (5): 419-432.
[2] Ikeda, T., Matsumoto, Y., Narukawa, T., Takahashi, M., Yamada, S., Oshima, H., Liu, M. (2012). Development of gravity compensator for analysis of walking characteristics under the reduced gravity (Verification of its effectiveness with rimless wheel). Transactions of the Japan Society of Mechanical Engineers, Series C. 78 (790): 2119-2130.
[3] Oshima, H., Tanaka, K., Mukai, C. (2010). Getsumentaizai mission ni hitsuyouna undouseirigaku nikansuru kentoukadai. J. Society of Biomechanisms. 34 (1): 2-4 (in Japanese).
[4] Kamibayasi, K., Wakahara, T., Yoshida, S., Tsujiuchi, N., Ito, A., Nakamura, Y., Izawa, T., Fujisawa, Y., Ohira, Y. Estimation of leg-muscle mobilization on the Mars and the Moon using an antigravity treadmill in human. International Space Station Research & Development, San Diego, 2016.
[5] NIPPON SIGMAX Co., Ltd., AlterG koshiki site | NIPPON SIGMAX kabushikigaisha TOP | Alter-G,NIPPON SIGMAX Co., Ltd. (online), accessed on January 10th, 2018. < https://www.alter-g.jp/ > (in Japanese).
[6] Adachi, W., Tsujiuchi, N., Koizumi, T., Shiojima, K., Tsuchiya, Y., Inoue, Y. (2012). Development of walking analysis system using by motion sensor with mobile force plate. Transactions of the Japan Society of Mechanical Engineers, Series C. 78 (789): 1607-1616 (in Japanese).
[7] Ivanenko, Y.P., Sylos Labini, F., Cappellini, G., Macellari, V., McIntyre, J., Lacquaniti, F. (2011). Gait transitions in simulated reduced gravity. Journal of Applied Physiology 110, 781-788.