Event Abstract

Locus coeruleus activity during sleep for off-line memory consolidation

  • 1 Max Planck Institute for Biological Cybernetics, Germany
  • 2 College de France, France

Noradrenergic modulation has been hypothesized to contribute to memory consolidation by promoting synaptic plasticity in recently activated neural circuitries [1]. Behavioral studies identified a time window of ~ 2h after learning when noradrenergic influence on memory consolidation is most pronounced. Behavioral data are complemented with studies of long-term potentiation (LTP) or long-term depression (LTD), a cellular models of memory formation. One important outcome of these studies is that noradrenaline (NA) is required for late, protein-dependent phase of synaptic plasticity. According to the consolidation hypothesis, memory formation is a long-lasting process and thus continues after actual learning experience, i.e. off-line. Recently, sleep-mediated mechanisms of off-line information processing has drawn a lot of attention. A number of human and animal studies have convincingly shown the beneficial role of slow wave sleep (SWS) for memory consolidation. The activity of brain stem nucleus Locus Coeruleus (LC) - a major source of NA in the forebrain - is low, but not absent during SWS. By directly monitoring spiking activity of LC in behaving rats, we have recently revealed a transient surge of LC activity that occurred during SWS at around 2h after learning. In the present study we aimed to characterize LC activity in relation to SWS-associated cortical oscillations. Both slow waves (~ 1Hz) and spindles (~12Hz) are modulated by learning. LC activity is highly synchronized during SWS. Firing of LC neurons mostly occurs during the transition from cortical down to up state defined by a phase of slow oscillations. The LC activity is elevated immediately after the spindle onset. Taking into account experience-dependent replay of neuronal assemblies in multiple brain regions time-locking of LC activity to major cortical rhythms suggests synchronous noradrenergic modulation promoting synaptic plasticity in multiple and functionally connected brain sites.

References

1. Sara 2000. Learn Mem 7,73-84.

Conference: 41st European Brain and Behaviour Society Meeting, Rhodes Island, Greece, 13 Sep - 18 Sep, 2009.

Presentation Type: Oral Presentation

Topic: Symposia lectures

Citation: Eschenko O and Sara S (2009). Locus coeruleus activity during sleep for off-line memory consolidation. Conference Abstract: 41st European Brain and Behaviour Society Meeting. doi: 10.3389/conf.neuro.08.2009.09.023

Copyright: The abstracts in this collection have not been subject to any Frontiers peer review or checks, and are not endorsed by Frontiers. They are made available through the Frontiers publishing platform as a service to conference organizers and presenters.

The copyright in the individual abstracts is owned by the author of each abstract or his/her employer unless otherwise stated.

Each abstract, as well as the collection of abstracts, are published under a Creative Commons CC-BY 4.0 (attribution) licence (https://creativecommons.org/licenses/by/4.0/) and may thus be reproduced, translated, adapted and be the subject of derivative works provided the authors and Frontiers are attributed.

For Frontiers’ terms and conditions please see https://www.frontiersin.org/legal/terms-and-conditions.

Received: 04 Jun 2009; Published Online: 04 Jun 2009.

* Correspondence: Oxana Eschenko, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, oxana.eschenko@tuebingen.mpg.de