Event Abstract

Measuring multivariate spike train synchrony

  • 1 University of California, United States
  • 2 Institute for Complex Systems,CNR, Italy
  • 3 Universitat Pompeu Fabra, Spain
  • 4 Harvard University, United States

Measuring the degree of synchrony between two or more neuronal spike trains is an important tool in order to address issues such as neuronal coding, information transmission and model validation. Another prominent application is to measure the reliability of the response of individual neurons upon repeated presentations of the same stimulus. A number of both multivariate and bivariate measures have been proposed to address this issue. Multivariate approaches include the reliability measures by Hunter and Milton [1] and by Tiesinga [2], while bivariate approaches comprise the Victor-Purpura [3] and the van Rossum [4] distance, as well as the similarity measure proposed by Schreiber et al. [5], and, the most recent proposal, the ISI-distance [6], a method based on relative instantaneous firing rates. These approaches can be applied to multivariate data in a pairwise fashion, e.g., reliability can be defined as the average over all pairwise similarities. Here, we extend the bivariate ISI-distance to a truly multivariate measure [7]. This extension inherits the distinct properties of the ISI-distance; in particular, it is parameter free and time scale adaptive. In an application to in vitro recordings of cortical cells from rats we show that the multivariate ISI-distance serves as an excellent means to track relative firing patterns in the spike trains. The instantaneous degree of synchrony can be visualized easily, thus rendering this method is a good choice for moving window applications on non-stationary neuronal dynamics. In particular, when estimating reliability, this property allows the analyst to correlate intervals of high or low synchrony to the respective local stimulus features, which is desirable in many applications. Furthermore, we use a simulated network of Hindemarsh-Rose neurons with predefined clustering [8] as a controlled setting to evaluate the performance of the multivariate ISI-distance in distinguishing different sets consisting of a variable number of spike trains from different clusters. In a comparison with other multivariate approaches, as well as generalizations of several bivariate methods, the method presented here proves to be a very reliable indicator of set balance. Acknowledgements: TK has been supported by the Marie Curie Individual Intra-European Fellowship "DEAN", project No 011434, DC by the I.U.E. Department of the Generalitat of Catalunya and the European Social Fund, and RGA by the Ramón y Cajal program. JSH acknowledges financial support by the San Diego Foundation.

References

1. Hunter JD, Milton G, Thomas PJ, Cowan JD: Resonance effect for neural spike time reliability. J Neurophysiol, 1998, 80:1427-1438.

2. Tiesinga PHE, Sejnowski TJ: Rapid temporal modulation of synchrony by competition in cortical interneuron networks. Neural Comput, 2004, 16:251-275.

3. Victor J, Purpura K: Nature and precision of temporal coding in visual cortex: A metric-space analysis. J Neurophysiol 1996, 76:1310-1326.

4. van Rossum MCW: A novel spike distance. Neural Computation 2001, 13:751-763.

5. Schreiber S, Fellous JM, Whitmer JH, Tiesinga PHE, Sejnowski TJ: A new correlation-based measure of spike timing reliability. Neurocomputing 2003, 52:925-931.

6. Kreuz T, Haas JS, Morelli A, Abarbanel HDI, Politi A: Measuring spike train synchronization. J Neurosci Methods 2007, 165: 151-161.,

7. The Matlab source code for calculating and visualizing both the bivariate and the multivariate ISI-distance as well as information about the implementation can be found under http://inls.ucsd.edu/~kreuz/Source-Code/Spike- Sync.html.

8. Morelli A, Grotto RL, Arecchi FT: Neural coding for the retrieval of multiple memory patterns. Biosystems 2006, 86:100-109.

Conference: 10th International Conference on Cognitive Neuroscience, Bodrum, Türkiye, 1 Sep - 5 Sep, 2008.

Presentation Type: Poster Presentation

Topic: Neuroinformatics of Cognition

Citation: Kreuz T, Chicharro D, Andrzejak R, Haas J, Abarbanel H, Torcini A and Politi A (2008). Measuring multivariate spike train synchrony. Conference Abstract: 10th International Conference on Cognitive Neuroscience. doi: 10.3389/conf.neuro.09.2009.01.363

Copyright: The abstracts in this collection have not been subject to any Frontiers peer review or checks, and are not endorsed by Frontiers. They are made available through the Frontiers publishing platform as a service to conference organizers and presenters.

The copyright in the individual abstracts is owned by the author of each abstract or his/her employer unless otherwise stated.

Each abstract, as well as the collection of abstracts, are published under a Creative Commons CC-BY 4.0 (attribution) licence (https://creativecommons.org/licenses/by/4.0/) and may thus be reproduced, translated, adapted and be the subject of derivative works provided the authors and Frontiers are attributed.

For Frontiers’ terms and conditions please see https://www.frontiersin.org/legal/terms-and-conditions.

Received: 15 Dec 2008; Published Online: 15 Dec 2008.

* Correspondence: Thomas Kreuz, University of California, San Diego, United States, tkreuz@ucsd.edu