Туре	Name	Ref	Sample	Key Features
Replay/ Detection	Replay attack end-to-end detection	(Tom et al., 2018)	https://mohitjaindr. github.io/pdfs/c20-interspeech- 2018.pdf	Contains a visual attention mechanism on time-frequency representations of speeches that uses group delay features and ResNet-18 architecture.The model works perfectly with an Equal Error Rate of 0 percent
Synthesis TTS/ Creation	Char2Wav	(Sotelo et al., 2017)	https://github.com/ gcunhase/PaperNotes/ blob/master/notes/. char2wav.md	Reader (frontend): Bidirectional RNN, transform the text into linguistic features" Neural vocoder (backend): Conditional SampleRNN: takes the linguistic features as input and creates the corresponding audio.
Synthesis TTS/ Creation	Tacotron2	(Shen et al., 2018)	https://github.com/ NVIDIA/tacotron2	End to end Text to Speech model that uses recurrent sequence-to-sequence feature prediction network (for Embedding characters to mel spectrograms) and a modified WaveNet.
Synthesis TTS/ Creation	VoCo	(Jin et al., 2017)	https:// www.youtube.com / watch?v=RB7upq8nz IU	Not open source. Includes text to speech and voice conversion of the text-based editing, pitch profile, manual editing of length and amplitude.
Synthesis TTS/ Creation	WaveGlow	(Prenge et al., 2019)	https://github.com /NVIDIA/waveglow	It combines insights from Glow and WaveNet to be able to provide fast, efficient and high-quality audio synthesis, without the need for auto-regression. It uses only a single network trained using only a single cost function: maximizing the likelihood of the training data, which makes the training procedure simple and stable
Synthesis TTS/ Creation	Tacotron	(Wang et al., 2017)	https://github.com /Kyubyong/tacotron	End to end text to speech model, creates audio directly from text.
Synthesis TTS/ Creation	MelNet	and Lewis, 2019)	https://github.com/ Deepest-Project/MelNet	It is introduced as a generative model for audio which can capture longer-range dependencies for the first time in the Text-to-Speech area. MelNet couples a fine-grained autoregressive model and a multiscale generation procedure to jointly capture local and global structure.
Synthesis TTS/ Creation	Deep Voice 3	(Ping et al., 2018)	https://github.com/ Kyubyong/deepvoice3	A fully convolutional attention based neural for Text-to-Speech that can create high-quality audio samples.
Synthesis TTS/ Creation	Wavenet	(Oord et al., 2016)	https://github.com /ibab/tensorflow-wavenet	It uses Causal Convolutional layers and Dilated Causal Convolutional layers to create high quality audio deepfake.

Table 1. Quick guide for Audio Deepfake tools

Туре	Name	Ref	Sample	Key Features
Synthesis TTS/ Creation	GAN based Speech Synthesis	(Saito et al., 2018)	https://github.com /r9y9/gantts	Statistical parametric method for speech synthesis based on GANs
Synthesis TTS/ Creation	HiFi-GAN	(Kong et al., 2020)	https://github.com /jik876/hifi-gan	A GAN based speech synthesis framework which outperformed a lot of the previous works.
Synthesis TTS/ Creation	MelGAN	(Kumar et al., 2019)	https://github.com /seungwonpark/melgan	non-autoaggressive so fast, fully convolutional with significantly fewer parameters than the other frameworks.
Voice Conversion/ Impersonatio Creation		(Gao et al., 2018)	Not Found	Transfering style from one speaker to another. Obtained from huge modifications on the DiscoGAN
Voice Conversion/ Impersonatio Creation		(Fang et al., 2018)	https://github.com/ jackaduma/CycleGAN-VC2	A VC system based on CycleGAN. A nonparallel VC method that only learns one-to-one-mappings
Voice Conversion/ Creation	StarGAN- VC	(Kameo et al., 2018)	k h ttps://github.com/ liusongxiang/ StarGAN-Voice-Conversion	It has developed StarGAN (Choi et al., 2018) to a VC system that allows non-parallel many-to-many VC. There is a generator that takes an acoustic feature sequence instead of a single-frame acoustic feature as an input and outputs an acoustic feature sequence of the same length. (same as Kaneko et al. (2017) papers.
Voice Conversion/ Impersonatio Creation	SINGAN n/	(Sisman et al., 2019)	Not Found	GAN-based model for singing VC.
Voice Conversion/ Creation	ASSEM- VC	(Kim et al., 2022)	https://github.com/mindslab- ai/assem-vc	Assembling TTS vocoders and achieved very good voice quality
VC and TTS/ Detection	-	(Chen et al., 2020a)	Not found	Overcoming the generalization challenge by using: 1) large margin cosine loss function (LMCL) 2) online frequency masking augmentation that forces the neural network to learn more robust feature embeddings.
VC and TTS/ Detection	-	(Zhang et al., 2021b)	https://github.com/ yzyouzhang/ AIR-ASVspoof	An attempt to detect unknown synthetic voice spoofing attacks using one-class learning. It compacts the bonafide speech representation and injects an angular margin to separate the spoofing attacks in the embedding space.
VC, TTS and Replay attack/ Detection	-	(Chen et al., 2017)	Not found	Inspired by the success of ResNet in image recognition, they used it for automatic audio spoofing detection, and reduced the EER by 18 percent