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1 DISCRETIZATION ERROR COMPARISON OF DISPERSION-REDUCED FEMS
AND STANDARD FEMS

This section briefly explains the accuracy of the dispersion-reduced FEMs in time and frequency domains
against standard FEMs using conventional Hex8 from the theoretical aspects. Here, the discretization
error characteristics in both dispersion-reduced and standard FEMs are compared in the case of sound
propagation in a free field. We consider a plane wave propagation in a free field that is discretized by Hex8,
as shown in Figure S1. In the figure, the element size of Hex8 in each direction is denoted by dx, dy and dz ,
respectively. Also, θ and ϕ represent the elevation and azimuth in a spherical coordinate system. Detailed
procedure of this discretization error analysis can be found in the literature (Okuzono et al., 2012).

In the time domain, the discretization error is generally defined as the relative error between an exact
sound speed c and a numerical sound speed c̃. For standard TD-FEM using conventional Hex8 for spatial
discretization and Fox–Goodwin method for time integration, the discretization error is given as (Okuzono
et al., 2012)
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where k is the wavenumber, and ∆t is the time interval. The Eq. (S1) expresses that the standard TD-FEM
has second-order accuracy regarding the discretization error. Notably, the standard TD-FEM does not have
a second-order error term with respect to time. Therefore, the standard TD-FEM has fourth-order accuracy
in time by using Fox–Goodwin method. This is the reason for using Fox–Goodwin method. On the other
hand, the dispersion-reduced TD-FEM can eliminate the second-order error term in Eq. (S1) and it has the
fourth-order accuracy in terms of the discretization error, which is expressed as (Okuzono et al., 2012)
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To show the accuracy of the dispersion-reduced TD-FEM, Figure S2(A),(B) respectively presents
discretization errors of the dispersion-reduced TD-FEM and the standard TD-FEM in all sound wave
propagation directions (θ, ϕ). In those calculations, we considered that k = 4π and 8π with the element
size of dx = dy = dz = 0.05m. The time interval was set to the stability limit value. Note that the case of
k = 4π corresponds to the discretization that follows the well-known rule of thumb for the linear elements,
i.e., ten elements per wavelength. The case of k = 8π corresponds to the discretization at five elements
per wavelength. For the case of k = 4π, the dispersion-reduced TD-FEM shows significantly higher
accuracy than the standard TD-FEM. The maximum relative error of the dispersion-reduced TD-FEM
is less than 0.029% whereas that of the standard TD-FEM shows 1.6% relative error. Furthermore, the
dispersion-reduced TD-FEM shows significantly lower discretization error with the maximum relative
error less than 0.46%, even in the use of coarser mesh case of k = 8π. A recent solution convergence
study (Okuzono et al., 2019) using an impedance tube problem also revealed that the dispersion-reduced
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TD-FEM that uses a mesh of spatial resolution of five elements per wavelength shows higher accuracy than
the standard TD-FEM that uses a mesh discretized by the rule of thumb of ten elements per wavelength.

In the frequency domain, the discretization error is generally defined as the relative error between an exact
wavenumber k and a numerical wavenumber k̃. Unlike a time domain analysis, only spatial discretization
error is introduced. For standard FD-FEM using conventional Hex8, the dispersion error is given as
(Okuzono and Sakagami, 2018).
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The above equation shows that the standard FD-FEM has second-order accuracy and the function form
of the error has the same as that in Eq. (S1) of the standard TD-FEM. That means that the TD-FEM and
FD-FEM include the same magnitude of spatial discretization error when using the same finite elements
for spatial discretization. This is also true for the dispersion-reduced FEMs. For the dispersion-reduced
FD-FEM, the discretization error is defined as (Okuzono and Sakagami, 2018)
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The above equation has the same spatial discretization error term as that in Eq. (S2), and does not include
the time discretization error term − k4

480c
4∆t4, which is included in Eq. (S2) for the dispersion-reduced

TD-FEM. Since the contribution of the time discretization error term in Eq. (S2) is trivial, the dispersion-
reduced TD-FEM and FD-FEM have almost the same discretization error characteristics. For the cases at
k = 4π and 8π using the element size of dx = dy = dz = 0.05m, the dispersion-reduced FD-FEM shows
the maximum discretization errors of 0.033% and 0.46%, respectively. Meanwhile, when using different
time intervals ∆t = ∆tlimit, 0.5∆tlimit and 0.25∆tlimit where ∆tlimit represents the time interval at the
stability limit, the dispersion-reduced TD-FEM shows the maximum errors of 0.029%, 0.033% and 0.033%
for k = 4π respectively. For k = 8π, their maximum errors show 0.46%, 0.52% and 0.52%, respectively.
Note that a recent study (Okuzono and Sakagami, 2018) also showed that the dispersion-reduced FD-FEM
that uses a mesh of spatial resolution of five elements per wavelength provides higher accurate solution
than the standard FD-FEM using a mesh discretized by the rule of thumb of ten elements per wavelength.

2 INITIAL VALUE SELECTION EFFECT ON CONVERGENCE OF ITERATIVE
SOLVERS

This section briefly presents preliminary experimental results of how initial values selection of iterative
solvers affects its convergence in TD-FEM and FD-FEM. As described in Sections 2.1 and 2.2, the
CG and CSQMOR methods were used respectively for TD-FEM and FD-FEM with a diagonal scaling
preconditioning. We examined convergence speed using two initial value setups via the small cubic room
problem and the meeting room problem used in Section 3. Here, only the results for the meeting room
problem are presented since the small cubic problem results showed the same conclusion. The first setup
uses zeros to the initial value x0 of the iterative solver. We denote this setup as x0 = 0. Another setup uses
solutions in the previous time step or frequency as x0, denoted by x0 = xn−1.

As the results, Figure S3(A),(B) respectively present a comparison of iteration numbers between two
initial value setups x0 = 0 and x0 = xn−1 for TD-FEM and FD-FEM. For TD-FEM, results showed
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that CG method with the setup x0 = 0 converges with one less iteration number at almost all time steps
compared with the setup of x0 = xn−1. Conversely, for FD-FEM, a marked performance was obtained
by the setup of x0 = xn−1. As shown in Figure S3(B), CSQMOR method with the setup of x0 = xn−1

outperforms the setup of x0 = 0 with fewer iteration numbers at almost all frequencies. Quantitatively, the
average reduction rate of iteration number using the setup x0 = xn−1 to the x0 = 0 reaches 22%. As an
example to show the effectiveness of the setup x0 = xn−1, Figure S4 shows a comparison of convergence
history at 1500 Hz between x0 = 0 and x0 = xn−1. Here, the relative residual 2-norm in the figure is
defined as ||Axi − b||2/||b||2, where A and b are respectively the coefficient matrix and right-hand side
vector of the linear system, and xi is the approximate solution at i-th iteration. It is found that x0 = xn−1

can start the computation with one order smaller residual 2-norm value at the first iteration. At all iterations,
x0 = xn−1 presents lower residual 2-norm than that of x0 = 0, and consequently it achieves faster
convergence. From those results, we chose the setup x0 = 0 for TD-FEM and x0 = xn−1 for FD-FEM,
respectively. Note that it can be an effective way to use a solution in the previous frequency results as an
initial value of the iterative solver for FD-FEM when calculating room impulse responses. However, for its
generalization, further investigations will be necessary from various aspects, e.g., the effect of frequency
interval and the type of iterative solvers.
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Figure S1. Plane wave propagation in a free field discretized using Hex8.
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Dispersion-reduced TD-FEM

k = 4πA k = 8π

Standard TD-FEM

k = 4πB k = 8π

Figure S2. Discretization errors at k = 4π (left) and at k = 8π (right) for (A) the dispersion-reduced
TD-FEM and (B) the standard TD-FEM.
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Figure S3. Comparison of iteration numbers between two initial value setups x0 = 0 and x0 = xn−1:
(A) iteration numbers at each time step in TD-FEM and (B) iteration numbers at each frequency in FD-
FEM. TD-FEM and FD-FEM, respectively, use CG method and CSQMOR method with diagonal scaling
preconditioning.
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Figure S4. Comparison of convergence history of CSQMOR method at 1500 Hz between two initial value
setups x0 = 0 and x0 = xn−1.
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