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1 BRIEF INTRODUCTION OF RELEVANT CONCEPTS
Antibodies.

Antibodies are produced by B cells and are used by the immune system to recognize, bind, and
neutralize pathogens. Antibodies are proteins consisting of immunoglobulin (IG) molecules of
identical heavy chains and identical light chains. Immunoglobulins are encoded by B-cell receptor
(BCR) sequences. Unlike other proteins, IGs are not encoded in the genome directly but present
results of somatic V(D)J recombination of IG loci (Kurosawa and Tonegawa, 1982). Each chain of
each IG is encoded by a concatenation of one of V, D (only for heavy chain), and J genes, known as
an IG gene. An 1G gene contains three complementarity-determining regions (CDRs) representing
antigen binding sites. CDRs are separated by four framework regions (FRs) that form a stable
structure displaying CDRs on the antibody surface.

AM process.

After successful binding of an IG to a given pathogen, the corresponding B cell undergoes the
affinity maturation (AM) process aiming to improve its affinity (i.e., binding ability) to the antibody
(Tonegawa, 1983; Neuberger and Milstein, 1995). First, the targeting B cell moves to a germinal
center (GC) of a lymph node, where it undergoes clonal expansion: cell divisions that increase
the pool of antibodies that bind to the antigen. Then, certain enzymes in the B cell and its clones
are activated and introduce somatic hypermutations (SHMs) in the utilized IG genes as a means
to improve affinity (Muramatsu et al., 2000). SHMs change the three-dimensional structure of an
antibody (and thus its ability to bind to an antigen) stochastically. The regulatory mechanisms of the
immune system play the role of natural selection by expanding B cells with high affinity for antigen
and killing self-reactive B cells with potentially harmful mutations. The AM process activates naive
B cells (i.e., those that have not been exposed to an antigen) and differentiates them into memory
and plasma B cells. Memory B cells can be repeatedly activated and subjected to the AM Mesin
et al. (2020), while plasma B cells can secrete massive levels of neutralizing antibodies. Studies
show that CDRs, which include the binding sites, accumulate more SHMs compared to FRs (Hsiao
et al., 2019; Safonova and Pevzner, 2019).

Clonal expansion.

The AM process leads to the formation of clonal lineages within a given antibody repertoire,
where each clonal lineage is formed by descendants of a single naive B cell. The expressed IG
transcripts within the same clonal lineage share a common combination of V, D, and J genes and
differ by SHMs only. The evolutionary history of each clonal lineage can be represented by a clonal
tree, where each vertex corresponds to a B cell and each B cell is connected by a directed edge with
all its immediate descendants.
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2 SUPPLEMENTARY METHODS
2.1 Efficient sampling from the BDT model

Recall that because of the memoryless property, the time until the next BDT event always follows
the exponential distribution with rates Ap(x;,S), Ap(xi,S), and Ar(x;, S) for each event type.
The time until any event for any entity follows an exponential distribution with rate

A=) (Ap(xi,S) + Ap(xi, S) + Ar(x, 9)) .
€S

The probability of the next event being a specific event E € {B, D, T} for a particular entity i is

AE (Xi, S)
—
We assume that we are able to write
Pr(x;,S
Ap(x;,8) = %

where Pp : Rgo X Ré\fo — R>p and @ : ]Révo — R are polynomial functions with a constant
degree, where coefficients of Py are non-negative. With this assumption, for any entity i € S, the
birth rate can be written as

Za,,BGI‘ Ba,ﬂsﬁxg

ZBGI‘ Qﬁsﬂ

where I' = [0.. .fy]N for some integer v, B, 3 and ()g are coefficients of the polynomials, and aP

AB(Xia S) =

denotes [ [, a'ioi for vectors a and b. We can write Ap(x;, S) and Ar(x;, S) similarly by replacing
B, g with D, g and 7, g. Note that in our specific AM model, rates shown in Table S1 follow this
assumption.

With this assumption, we can write

)\ _ ZCM,/BGF Pa’/BS/Bea
ZBGI‘ Qﬁsﬁ
where P, g = By g+ Dag + Tap and O, = Y ;.o X for all a values (note that S = 61). Thus, to

efficiently sample the time till the next event, we only need 6, values which we can simply store
and update in constant time after each event. This fast storing and updating allows for a constant

Table S1. Birth, death, and transformation rate functions as polynomials.

Rate functions Infected stage Dormant stage
Ap(xi,S) - AbGi 0
Ap(x;,8)  2l=empmd (95 4 (5,0 — N)gi + Xy (Aa — Np)gi + X,
Ar(x;,S) ti 0
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time sampling of the next event time (in terms of n) for constants N and . Once we sample the
time till the next event, we need to sample one of the three possible events. The probability of the
next event being birth for an entity ¢ is

AB(XZ‘,S) AB(XZ‘,S)

A Yes(AB(x4,8) + Ap(x;,S) + Ar(x;, S))

Yo per BapSxy 3 (B 48%xe 1 )
— o : _
2 a,per Foup8%a a,Ber Z > s per Pa S 0a

B Z <(Baﬁsﬂxf‘)( PQ’BSBHOC )>
a,B€T P800 Z&,Bel“ Pd,BSBH@

Bag. x P, 3SP0,
= (FHE(EE—)
a,BeT a,f3 o Z&,BGI‘ P&ﬁS 907

(S

Also note that probability of each death and transformation event can be written similarly. This
equation enables an efficient sampling procedure detailed in Algorithm S1 of Appendix 4:

1. Sample (o, [3) pair (representing one term of the polynomial) from a multinomial distribution
Po 3S%0
&,Ber Pa,ﬂ’sﬁgéf '

on I' X I' where each pair has probability >

2. Sample entity ¢ from a distribution on S where each 7 has probability > /s,.

Bag Dap ,nq Tas
Pa,g> Pap’ Pag’

3. Sample birth, death, or transformation with probabilities

In this procedure, the probability of selecting the birth event for an entity ¢ is simply
5 Bapx?  PapS’0a

@B Pa,p Oa 2a,ger P&,B_Sﬁed.
events). In terms of running time:

, which matches Equation (S1) (ditto for death and transformation

1. Step 1 takes constant time (in terms of n) given that 6, values (and thus S) are pre-computed
for all a.

2. Step 2 can be achieved in O(logn) time using an interval tree data structure to store partial
sums of x?"s (see Algorithm S1).

3. Step 3 takes constant time.

Thus, a tree on k£ nodes drawn from the distribution defined by the BDT process can be sampled in
O(klog(k)) time by repeated applications of Algorithm S1.
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2.2 Somatic hypermutagenesis frequency models

We next show the model for K® and f. Our model is based on an empirical frequency
K?°(s, 51, 52, 53, 54, 55) matrix that counts the number of times 5-mer (s1, 52, 53, 54, 55) converts to
(s1, 82, 8, 4, S5) in one cycle of cell division during hypermutation. Given the matrix, we define

K5(S,51752783,54,85)—” s # s3
= RateEm
f(g, S1, 82, 83, 54, 85) ate:5 }) (S2)
1 ZSIE{A,C,G,1 }7{S}K (8 751752783734735> S =83
where -
E: K (S 51,592,583, 54, S )
,82,53,54,55€ A,C,G,T 3921y 92,903,554, 95
RateEmp = 1 — 51,52,83,54,85 €4 } (S3)

= )
25,81,82753754,856{A7C,G7T} K> (s, 51,52, 53, 54, 53)

Somatic hypermutagenesis of antibodies is the result of activation-induced deaminase (AID)
enzyme activity that changes a random C:G base into a U:G base in B cell DNA. U:G mismatch
can be repaired using UDG (uracil-DNA glycosylase) or MMR (DNA mismatch repair) machinery
that forms diversity of hypermutations (Peled et al., 2008). Certain biological mechanisms of
SHM occurrences were studied extensively. For example, Rogozin and Kolchanov (1992) observed
specific hot/cold-spot DNA motifs for SHMs in immunoglobulin genes. Particularly, WRCY/RGYW
where W = {A, T}, Y = {C, T}, R = {G, A} and later predicted more general WRCH/DGYW with
H={A,C, T} and D = {A, G, T} motifs are hot-spots for SHMs caused by weak hydrogen-bounds
(Rogozin and Diaz, 2004). SYC/GRS (S = C, G) is a cold-spot motif caused by strong hydrogen-
bounds (Bransteitter et al., 2004). The locality of AID enzyme activity has been emphasized. (Smith
et al., 1996; Shapiro et al., 2003).

To simulate SHM, we modified a model proposed by Yaari et al. (2013). The model extends the
notion of hot/cold-spots and suggests that a certain hierarchy of mutabilities exists following Smith
et al. (1996) and Shapiro et al. (2003). The model is based on the mutability of a central base in
each 5-mer of an antibody heavy chain and consists of two parts: a targeting model identifying if a
mutation occurs in the variable part of an antibody and a substitution model providing an insight
into what is this mutation. In order to avoid selection bias, the authors considered 5-mers where
only synonymous substitutions of the central base are possible and inferred probabilities for other
5-mers. Unfortunately, synonymous substitutions constitute only a fraction of possible mutations. To
overcome this issue, Yaari et al. (2013) proposed a special inference method to estimate parameters
for the rest of 5-mers. Parameters for targeting and substitution models were inferred for 468 and
740 5-mers, respectively. However, the accuracy of this procedure was shown to be suboptimal
(Yaari et al., 2013, Table 2). Additionally, some of the datasets that were used to estimate the
parameters are derived from an error-prone 454 sequencing technology.

We re-estimated the parameters of this model and considered all 5-mers without limiting our
scope to synonymous mutations. We also utilized three up-to-date repertoire sequencing datasets
(all data were produced using the Illumina MiSeq platform):

e PRINA349143. Time series of three individuals during influenza vaccination, both before and
after vaccination.
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e PRINA395083. Bulk unsorted PBMC from peripheral blood of several healthy donors.
e A dataset of paired end sequences, added to increase power.

While the last dataset we used is not publicly available, we make the resulting k-mer model available
publicly at https://github.com/chaoszhang/immunosimulator/blob/master/
kmerFreq.txt.

From each dataset, we obtained a matrix of the size 1024 x 4, where each row corresponds to a
distinct 5-mer and contains # non-mutated occurrences of this 5S-mer and three possible # nucleotide
substitution occurrences. To calculate this matrix for a given dataset, we found the closest V gene
for every read and record the number of observed 5-mers in the gene and their corresponding
mutated copies across the read. For any 5-mer K, the corresponding row of a constructed matrix
can be viewed simultaneously as a value of Binomial and Multinomial distributions. Binomial
distribution represents the number of occurred mutations among all occurrences of the 5-mer
K, while Multinomial distribution indicates the number of mutations to specific bases among all
occurred mutations. The parameters of these distributions indicate the mutability and substitution
profiles for each 5-mer K. The 5-mer frequencies were combined across all these datasets to obtain
the final matrix, available at https://github.com/chaoszhang/immunosimulator/
blob/master/kmerFreq.txt.

2.3 Default parameters

Here we provide the actual default values used for several parameters that did not fit in Table 1 of
the main paper.
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2.3.1 BLOSUM.

The BLOSUM matrix table (Table S2) is obtained from ftp://ftp.ncbi.nih.gov/
blast/matrices/BLOSUMI100.

Table S2. BLOSUM table

A RND COQEGHTITLI KMTETZ PSTWYV
8 3 4 5 2 2 3 1 4 4 4 2 3 5 2 1 -1 6 -5 2
310 -2 5 8 0 2 6 -1 -7 6 3 4 6 5 3 3 -7 5 6
4 2 11 1 5 -1 2 2 0 7 -7 -1 -5 -7 5 0 -1 -8 -5 -7
5 5 1 10 8 2 2 4 3 8 8 3 -8 -8 -5 2 4 -10 -7 -8
2 8 5 8 14 -7 9 7 8 3 5 8 4 4 8 3 3 T -6 -3
2 0 -1 2 711 2 5 1 6 -5 2 2 6 4 2 3 -5 4 5
3 2 2 2 9 2 10 6 -2 -7 -7 0 5 8 4 2 3 8 7 5
1 6 2 4 7 5 6 9 6 9 8 5 7 8 6 2 -5 -7 -8 -8
4 1 0 3 8 1 2 6 13 7 6 3 5 4 5 3 4 5 1 -7
4 7 7 8 3 6 -7 9 -7 8 2 6 1 2 7 5 3 6 -4 4
4 6 7 8 5 5 7 8 6 2 8 6 3 0 -7 6 4 -5 4 0
2 3 1 3 8 2 0 5 3 6 610 4 6 3 2 3 -8 -5 -5
3 4 5 8 4 2 5 7 5 1 3 4 12 -1 5 4 2 4 5 0
5 6 7 8 4 6 8 8 4 2 0 6 -1 11 7 -5 -5 0 4 -3
2 5 5 5 8 4 4 6 5 7 -7 3 5 7 123 4 8 T 6
1 3 0 2 3 2 2 2 3 5 6 2 4 5 3 9 2 T 5 4
1 3 -1 4 3 3 3 5 4 3 4 3 2 5 4 2 9 7 5 -
6 7 8 -10 -7 5 8 7 5 6 -5 -8 4 0 -8 7 -7 17 2 -5
5 5 5 7 6 4 7 8 1 4 4 5 5 4 7 55 2 125
2 6 -7 8 3 5 5 8 7 4 0 5 0 3 -6 4 -1 -5 -5 8

<<KEHunTTmIACO=IQmOoONTZ= >

2.3.2 Starting and target sequences.
2.3.2.1 SARS-CoV2
The starting sequence U is set to:

CAAATGCAGCTGGTGCAGTCTGGGCCTGAGGTGAAGAAGCCTGGGACCTCAGTGAAGGTCTCCT
GCAAGGCTTCTGGATTCACCTTTACTAGCTCTGCTGTGCAGTGGGTGCGACAGGCTCGTGGACAA
CGCCTTGAGTGGATAGGATGGATCGTCGTTGGCAGTGGTAACACAAACTACGCACAGAAGTTCCA
GGAAAGAGTCACCATTACCAGGGACATGTCCACAAGCACAGCCTACATGGAGCTGAGCAGCCTGA
GATCCGAGGACACGGCCGTGTATTACTGTGCGGCACCGCACTGCAGCGGCGGCAGCTGCCTICGAT
GCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTICTCTTCA

and thus (j is

QVQLVQSGPEVKKPGTSVKVSCKASGEFTEFTSSAVOWVROARGOQRLEWIGWIVVGSGNTNYAQKF
QERVTITRDMSTSTAYMELSSLRSEDTAVYYCAAPHCSGGSCLDAFDIWGQGTMVTVSS.

In each replicate simulation ¢; and ¢; are randomly chosen from Table S3.



ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM100
ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM100
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Table S3. Names of antibodies in CoV-AbDab, heavy chain sequences (targets), and starting days of infection

Name
C005

COV2-2072

Ab_58G6

S2-E12

B1-182-1

COVOX-

253H55L

C597

AZD-8895

CS102

Beta-47

CZ-D7

R259-1B9

Omi-12

BD57-049

Target Sequence

QVQLVQSGPEVKKPGTSVKVSCKASGFTFTSSAVQWVRQAR
GORLEWIGWIVVGSGNTNYAQKFQERVTITRDMSTSTAYME
LSSLRSEDTAVYYCAAPHCSGGSCLDAFDIWGQGTMVTVSS
QOMQLVQSGPEVKKPGTSVKVSCKTSGFTFTSSATIQWVRQAR
GOQRLEWIGWIVVGSGNTNYAQKFQERVTITRDMSTSTAYME
LSSLRSEDTAVYYCAAPHCNRTSCYDAFDLWGQGTMVTVSS
OMQLVQSGPEVKKPGTSVKVSCKASGFTFSSSAVQWVRQAR
GOHLEWIGWIVVGSGNTNYAQKFQERVTLTRDMSTRTAYME
LSSLRSEDTAVYYCAAPNCNSTTCHDGFDIWGQGTVVTVSS
QVQLVQSGPEVKKPGTSVRVSCKASGFTFTSSAVQWVRQAR
GORLEWVGWIVVGSGNTNYAQKFHERVTITRDMSTSTAYME
LSSLRSEDTAVYYCASPYCSGGSCSDGFDIWGQGTMVTVSS
OMQLVQSGPEVKKPGTSVKVSCKASGFTFTSSAVQWVRQAR
GORLEWIGWIVVGSGNTNYAQKFQERVTITRDMSTSTAYME
LSSLRSEDTAVYYCAAPYCSGGSCFDGFDIWGQGTMVTVSS
QVQLVQSGPEVKKPGTSVKVSCKASGFTFTTSAVQWVRQAR
GORLEWIGWIVVGSGNTNYAQKFQERVTITRDMSTTTAYME
LSSLRSEDTAVYFCAAPHCNSTSCYDAFDIWGQGTMVTVSS
QVQLVQSGPEVKKPGTSVKVSCKASGFTEFTNSAVQWVRQSR
RORLEWIGWIVVGSGNTNYAQKFQERVTITRDMSTSTAYME
LSSLRSEDTAVYYCAAVDCNSTSCYDAFDIWGQGTMVTVSS
OMQLVQSGPEVKKPGTSVKVSCKASGFTFMSSAVQWVRQAR
GORLEWIGWIVIGSGNTNYAQKFQERVTITRDMSTSTAYME
LSSLRSEDTAVYYCAAPYCSSISCNDGEDIWGQGTMVTVSS
QVQLVQSGPEVKKPGTSVKVSCKASGFTFPSSAVQWVRQAR
GOQRLEWIGWIVVGSGNTNYAQKFQERVTITRDMSTSTAYME
LSSLRSEDTAVYYCAAPHCGGGSCYDGFDIWGQGTMVTVSS
QVQLVESGPEMKKPGTSVKVSCKASGFTFITSAVQWVRQAR
GQRLEWMGWIAVGSGNTNYAQKFQDRVTINRDMSTSTAYME
LSSLRSEDTAVYYCAAPHCNRTSCHDGEFDIWGQGTMVTVSS
OMQLVQSGPEVKKPGTSVKVSCKASGF TFTNSAMQWVRQAR
GQRLEWVGWIVVASGNANSARRFHDRVTITSDMSTSTAYLE
LSSLRSEDTAVYYCALNHCSNTTCLDGFDIWGQGTMVSVSS
OMHLVQSGPEVKKPGTSVKVSCKASGFTFSSSAVQWVRQAR
GOHLEWIGWIVVGSGNTNYGQKFQERVTITRDLSTSTVYME
LISLRSEDTAVYFCAAPYCTGGSCFDAFDIWGQGTMVTVSS
EVQLVESGPEVKKPGTSVKVSCKASGF SFSMSAMQWVRRAR
GORLEWIGWIVPGSGNANYAQKFQERVTITRDESTNTGYME
LSSLRSEDTAVYYCAAPHCNKTNCYDAFDIWGQGTMVTVSS
OMQLVQSGPEVKKPGTSAKVACQASGFTEFYSSAIQWVRQAR
GQRLEWIGWIVVGSGNTNYAEEFQERVTITRDMSTSTAYME
LSSLRSGDTAVYYCAAPHCNRTSCYDGFDIWGQGTMVTVSS

Day

41

98

163

272

283

430

458

504

575

609

641

743

785
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2.3.2.2 Influenza
The starting sequence U is set to:

CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCACAGACCCTGTCCCTCACCT
GCACTGTCTCTGGTGGCTCCATCAGCAGTGGTGGTTACTACTGGAGCTGGATCCGCCAGCACCCA
GGGAAGGGCCTGGAGTGGATTGGGTACATCTATTACAGTGGGAGCACCTACTACAACCCGTCCCT
CAAGAGTCGAGTTACCATATCAGTAGACACGTCTAAGAACCAGTTCTCCCTGAAGCTGAGCTCTG
TGACTGCCGCGGACACGGCCGTGTATTACTGTGCGAGAGCGCGCGTCAATAGGGATATTGCGTAC
GGCAACTGGTTCGACCCCTGGGGCCAGGGGACCCTGGTCACCGTICTCCTCA

and thus ( is

OQVQLOESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLEWIGYIYYSGSTYYNPS
LKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARARVNRDIAYGNWEDPWGQGTLVTVSS.

7;, ¢;, and ¢; are given in Table S4.
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Table S4. Flu accession numbers, CDRs of target sequences, and starting days of infection

Accession  Target CDR1 Target CDR2 Target CDR3 Day
AAK70482.1 SGGYY IGYIYYSGSTYYNPSL ARARVNRDIAYGNWFDP 0
AAK70478.1 CWWVP WWCHCGWCNVXXNIXF  ARARVNREXAYGNWFZA 182
ABL76892.1 WWWXX XGYVYYSGSDYYDPSL  VKVKVNKEVVYGNWFEA 365
AFP83103.2 WWWAB TBYVYYSGSDYYDXSL VKVKINKEVVYGNWFEA 398
AFP83094.2 WWWGX TGYVYYSGSDYYDXSL  VKVKVNKEVVYGNWFEQ 431
AFP83095.2 WWCPP WWCHCAWXBTXXBISL ARARVNRELAYGNWFEA 464
AFP83197.2 WWCPP WWCHCZWYZVXXBISF ~ ARARVNRELAYGNXFEA 497
AFP83098.2  WWWAX AGYVYYSGTDYYDBSL VKVKINKEVVYGBWFEZ 530
AFP83100.2 WWWPK SXHVYYSGSDYYDXSL  VKVKVNKEVVYGNWFEA 564
10 AAO038870.2  WWCPP WWCHCCWXBVXYBXSY ARARVNRELAYGNWFZA 597
11 AFP83199.2 WWLPP WWCHCEWLHVXXXIXY ARARVNRELAYGNWFZA 630
12 ABL76881.1 WLWCG KXYVYYSGSQFYDASL  VKVKLNKEVVYGNWFZL 663
13 AFP83097.2  WCWCG CRWVYYXXSDYYDIXL  VKVKINKEVVYGDWFEQ 696
14 AFP83202.2  WXYXY TGYVYYSGSDYYDPSL  VKVKMNKEVVYGNWFEA 730
15 AFP83201.2 WWVPP WWCNCCWFBTXXXLSF ~ ARARVNRELAYGNWFEA 763
16 AFP83118.2 WYYXD TGYVYYSGSDYYBPSL ~ VKVKLNKEVVYGNWFZK 796
17 AFP83200.2 WWCPP WWCHCCYIBVXXBXSY  ARARVNRELAYGNWFZA 829
18 AFP83107.2 WWCPP WWCHCCYVBTXXBXSF ARARVNRELAYGNWYZA 862
19 AFP83112.2  WFWDG XKWVYYSGSDYYDXSL ~ VKVKINKZVVYGNWFEQ 895
20 AFP83115.2 WWCPP WWCHCCQIBTXXBXSF ~ ARARVNRELAYGNWFZG 929
21 AFP831142  WPWGD XGYVHYSRSDYYDPSL ~ VKVKXNKZVVYRNWFEP 962
22 AFP83110.2 WWCPD WWCHCCWIDWXXBXXY ARARVNRZLAYRNWFEA 995
23 AFP831052  WYWGN GCXLYYSGSDYYDPSL IKVKIDKELVYGDWFZV 1028
24 AFP83106.2 WWCPP  WWCHCCWVWWNEGLXB GXXRXXRDLAYGNWYXA 1061
25 AFP83127.2 WFWBG TGYLYYSGSDYYDASL IKVKXNKELVYGNWFET 1095
26 AFP831242  WCWCG BGYLYYSGSDYYBFSL IKVCIBKEMVYGBWFET 1216
27 AFP83130.2 WWHPP WWCHCCWRBCXXXXSF ARARVNRSLAYGNWFEA 1338
28 AFP83134.2 WBYXY TGYVYYSGSDYYBPSL ~ VKVKMNKEVVYGNWFEA 1460
29 AFP83131.2 WWHPP WWCHCCWRBLXXXXSF  ARARVNRZLAYGNWFEA 1581

O 00 ~J O\ W B WD = =,

30 AFP83135.2 PPYGD PGKVYYSRSDYYDDSL IKVKXNKYVVYRNWFEK 1703
31 AFP83150.2 HPYGD PGBVYYSRSDYYDBSL VKVKINKZVVYRNWEFEK 1825
32  AFP83206.2 HPYGD PPHCYYSRSDYYDBSL VKVKXNKFVVYRNWFEZ 1946
33 AFP83147.2 HPYGD PGHVYYSRSDYYDPSL IKVKINBXVVYRNWFEK 2068
34 AFP83154.2 WXXAY PGYVYYSGSDYYDPSL  VKVKMNKEVVYGNWEFEP 2190
35 AFP83155.2 LPYGD PGHVYYSRSDYYDDSL VKVKLBKIVVYRNWFEK 2281
36 AFP83160.2 HPYGD PGHVYYSRSDYFDDSL VKVKXNKZVVYRNWEFEK 2372

37 AFP83159.2 HPYGD PGHVYYSHSDYYDDSL IKVKXNKZVVYRNWEFEK 2463
38 AFP83166.2 WEHGY XGYVYYSGSDYYDPSC  VKVKMNKEVVYGNWFEP 2555

39 AFP83173.2 WBIMY LGFVYYSGSDYYBPSL  VKVKMNKZVVYGNWEFZA 2920
40 AFP83163.2 WPIFY LGYVYYSGSBYYBPSL VKVKMNKZIVYGNWFZA 3011
41 AFP83170.2 YZIMY LGYVYYSASDYYBPSL VKVKMNKEIVYGNWFEA 3102
42 AFP83174.2 YPIMY SGYVYYSGSDYYBPSL ~ VKVKMNKEVVYGBWFEA 3193
43 AFP83184.2 ZS7YY TDYVYYSGIDYYTPSL VKVKMNKEVVYDYWFEP 3285
44 AFP83185.2 BBGYY TDYVYYSGIDYYYPSL VKVKMTKEVVYDYWEFZP 3345
45 AFP83181.2 EBAYY TDYVYYSGVDYYEPSL  VKVKMNKEVVYDYWFEP 3406
46 AFP83208.2 WDIPY LGYVYYSASDYYBPSL  VKVKMNKZVVYGNWEFZA 3467
47 AFP83178.2 FKIMY LGYVYYSGSDYYDPSL VKWKMBKZVYYGNWFZA 3528
48 AFP83177.2 YEIMW LGFVYYSGSDYYBPSL VKVKMNKZAVYGNWFZA 3589
49 AJK04689.1 DDGYY TDYVYYSGIDYYEPSL VKMKMAKZTVYDYWFZP 3650
50 AJKO04818.1 EBFYY TDYVYYSGVDYYCPSI VKVKMBKEVVYDYWLEP 3832
51 AJKO04119.1 ZDPYY TDYVYYSGIDYYBPSL VKVKMRKEVVYDHWFEP 4015
52 AFP83190.2 DDDYF TDYVYYSGIDYYWPSL VKVKMTKZVVYDYWEFZP 4075
53 AJKO05467.1 DDRYY TDYIYYSGIDYYKPSL VKVKMSKZVVYDYWFZP 4136
54 AJK05084.1 DDGYY TDYIFYSGITYYVPXL VKVKMSKEVIYDHWEZP 4197
55 AJK04964.1 DDGYY CDYXFYSGIDYYSPSC VKVKMSKEVVYDYWFEP 4258
56 AJKO05278.1 EDFYY TDYVWYTGIDYYXPXL  VKVKMVKXVVXDYWFZP 4319
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2.4 Evaluation metrics
2.4.1 Notations.

For a rooted tree T', we let L1 be the set of leaves and It be the set of internal nodes. For each
node v of T', let C(v) be the set of its children. We define ¢(v) as the set of node labels of labeled
nodes below v. Also, for any set of nodes V, we define ¢(V) = {¢(v) : ¢(v) # 0,v € V} and
&(T) = ¢(Ip U Ly). For a set of nodes V' and a set of labels @, (V) [ & = {®' NP : ' NP +
0, ®" € ¢(V)}. For labeled nodes ¥; and ¥}, let Ur (i, j) be the number of edges between the
node ¥; in 7" and the MRCA of ¥; and W; in T'.

2.4.2 Characterizing a clonal tree

We define a set of metrics for characterizing properties of simulated trees in terms of their
topology, branch length, and distribution of labeled nodes (Table S5). Some of these metrics are
motivated by similar ones on phylogenetic trees, but are adjusted to allow sampled internal nodes
and multifurcations. For example, to measure tree balance, we extend the definition of the number
of cherries but allow modifications (our definition reduces to the traditional definition when the tree
is binary). Other metrics (e.g., percent internal samples) are only meaningful for clonal trees and
are meant to quantify the deviation of a clonal tree from phylogenetic trees.

2.4.3 Comparing trees

Many metrics exist for comparing phylogenetic trees. However, in the presence of polytomies
and sampled ancestral nodes, the classic metrics need to be amended. Here, we generalize several
existing metrics and introduce new ones. All metrics are defined over a simulated tree R and a
reconstructed tree £, both induced down to include all labeled nodes (i.e., removing unlabeled
nodes if less than two of their children have any labeled descendants). See Table S6 for precise
definitions of metrics.

2.4.3.1 RF-related.

We refer to the set of labeled nodes under some subtree as a cluster. We define False Discovery
Rate (FDR) as the percentage of clusters in £ that are not in R, False Negative Rate (FNR) as the
percentage of clusters in [? that are not in £, and Robinson-Foulds cluster distance (RF) as the
number of clusters in either but not both trees. Note that unlike traditional Robinson and Foulds

Table S5. Properties of a clonal tree T'.

Property Definition

Internal sample (%) The percentage of labeled nodes in set I7.

Bifurcation index Defined as IIETll equals 1 for bifurcating trees and ~ 0 for the star tree.
Sample depth The average depth of labeled nodes in 7.

Balance (cherry) Half the sum over all leaves of the fraction of their siblings that are leaves.

> ver, (€5 ) J(ew) - 1) where 0/o = 1/

Single mutation branches (%) The percentage of branches with length one.

Accumulated mutations (avg) The average depth (path length to the root) of all labeled nodes of tree T'.
Accumulated mutations (sum) The summation of branch lengths of all branches of tree 7.

Mutations per branch The average branch length of tree T'.

The last four metrics require branch length (in mutation unit) on the tree.
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(1981) distance, here, internal nodes can also have labels, and we define the metric based on clusters
in a rooted tree instead of bipartitions in an unrooted tree. Moreover, the singleton clusters are trivial
when all labeled nodes are leaves; however, when there are labeled internal nodes, including or
excluding singletons can make a difference. Thus, we also define FPR FNR, and RF distance when
excluding singleton clusters.

2.4.3.2 Triplet-based.

We define triplet discordance (TD) as the number of trees induced by triples of labeled nodes (leaf
or internal) where the topology in the simulated tree and the reconstructed tree differ. We define
the triplet edit distance (TED) as the summation over all triplets of the labeled nodes of cluster
RF distance between the two trees induced to the triplet. Intuitively, it is the sum of the minimum
number of branch contractions and resolutions required to covert a triplet in R to a triplet in F,
summed over all triplet.

2.4.3.3 Path discordance.

Patristic discordance for a pair of labeled nodes W; and V; is defined as the difference between the
number of branches in the path between ¥; and ¥ on two trees 1?2 and E. The patristic discordance
(PD) between R and E is the summation of the Patristic discordance over all pairs of labeled nodes
(internal or leaf). We define the MRCA discordance for an ordered pair of labeled nodes ¥; and WV
as the difference between the number of branches in the path between W; and its MRCA with W
when computed from trees R and E. The MRCA discordance (MD) between the two trees is the
summation of MRCA discordance over all ordered pairs of labeled nodes.

The FNR and FDR metrics are already normalized. To normalize other metrics, for each
experimental condition, we create a control tree by randomly permuting labels of the true tree. We
then normalize scores (other than FNR and FDR) of a reconstruction method by dividing it by the
average score of replicates of the control method.

Computing FNR, FDR, and RF metrics takes O(¢) time with hashing and randomization
(algorithm S4). Triplet-based metric can be easily computed in O(s?) time with simple preprocessing
and iterating over all triplets. Both PD and MD take O(s?) time with preprocessing that computes
distances to MRCAs.

Table S6. Metrics for comparing the reference simulated tree R to estimated tree F.

Metric AB  Definition

False discovery rate FDR [¢(E)\ ¢(R)|/|¢(E)|

FDR no singletons FDR* [¢(I1x) \ ¢(Ir)|/j¢(1)|

False negative rate FNR [6(R) \ #(E)|/|¢(R)]|

FNR no singletons FNR*[¢(I1z) \ ¢(12)| /|¢(15)]

RF cluster distance RF  |¢(R) U ¢(E)| — |¢(R) N ¢(E)|

RF cluster distance RFx  |p(Ir) U o(Ir)| — |¢(Ir) No(Ig)]

no singletons

Triplet discordance TD  [{® : ¢(R) [ @ # ¢(E) [ D, C {Vy,..., VU }, |P| = 3}|
Tiplet it dtince TED. Y o, w011 F8) U (ol 18] (0(8) | #) (6(E) | ®)
MRCA discordanceMD ; ;e [Ur(i,j) — Ug(i, j)|

Patristic distance  PD 123, . [URr(1, ) + Ur(j, 1) —Ug(i,j) — Ug(j,i)|
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3 SUPPLEMENTARY FIGURES
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Figure S1. a) Log average affinity of activated cells to the current infection target at the end of
the infection, the number of activated cells at the end of the infection, and the duration of infection
by novelty of the target of one simulation under default conditions, showing the last five rounds as
examples. b) Average affinity of activated cells to current infection target, the number of activated
cells, and the number of memory cells by time after infection starts for the last five infections of one
simulation under default conditions. Lines are fitted using the LOWESS (locally weighted scatter
plot smoothing) algorithm. ¢) Number of memory cells and novelty of infections by time. Dormant
stages are indicated by dotted lines.
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Figure S2. Property of the estimated tree in relative to the corresponding true tree (estimated minus

tree) for default parameters of SARS-Cov2 dataset.
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Figure S4. Top: FNR* and FPR* rates excluding singletons by reconstruction methods on
simulations under default conditions; Bottom: Normalized Robinson-Foulds cluster distance with
and without singletons (RF and RF *), MD and PD.

Frontiers

15



Supplementary Material

o
0

©
N

False Negative Rate
© o o o
w Y w [®)]

o
[N}

o
0

o
N

False Negative Rate
o o o o
w > U o

©
N

Non-singleton Cluster Recovery by Selective Pressure

|
IgPhyML
® IgPhyML*
RAXML
® RAxmL*
Immunitree
® MST
BRILIA %
e control +
1/4x
1/2x
1x
2X He

Ve

0.0 0.2 0.4 0.6 0.8 1.0

N

False Discovery Rate

on-singleton Cluster Recovery by Hypermutation Rate

¥
IgPhyML

® IgPhyML*
RAXML

® RAxmL*
Immunitree

e MST
BRILIA

e control
10x10"™-4
5x10"-4
2.5x10"-4
1.25x10"-4

",

0.0

0.2 0.4 0.6 0.8 1.0
False Discovery Rate

Figure S5. Impact of selective pressure A (a) and mutation rate x4 (b) on tree inference error by

FDR* and FNR*.

16



Supplementary Material

60Accumulated Mutations (avg) Mutations per Branch Accumulated Mutations (avg) Mutations per Branch

6
6 60
50 5
40 4
40 4
30
3 20 2
Single Mutation (%) Accumulated Mutations (sum) Single Mutation (%) Accumulated Mutations (sum)
21000
0.3 1500 15500
0.4
1000
0.2 11000
0.2 00
00
1/4x 1/2x 1x 2x 1/4x 1/2x 1x 2x 1.25 2.5 5 10 1.25 2.5 5 10

Selective Pressure Selective Pressure Hypermutation Rate (x107-4) Hypermutation Rate (x107-4)

Figure S6. Impact of selective pressure A (left) and mutation rate x4 (right) on sequence-based
branch length properties on true trees. ;p = 5 X 10~* in (a-d) and A = 0.1 in (e-h).
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Figure S7. For varying levels of selective pressure (A), rate of hypermutation (1), and
reconstruction methods, we show MD error (left), and RF error (right). Under some conditions,
reconstructed trees from phylogenetic methods are worse than random permuting labels of true tree
because both MD and RF (to a lesser degree) severely penalizes resolution of multifurcated nodes.
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Figure S8. a) FNR versus FDR, b) Robinson-Foulds cluster distance (RF), MRCA Discordance
(MD), triplet edit distance (TED), and triplet discordance (TD) by BLOSUM weight multiplier of
framework region (w ) and reconstruction methods. ¢) Properties of true (black) and reconstructed
trees by BLOSUM weight multiplier of framework region (FR). d) Properties of true trees.
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Figure S9. a) FNR versus FDR, b) Robinson-Foulds cluster distance (RF), MRCA Discordance
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Figure S10. a) FNR versus FDR, b) Robinson-Foulds cluster distance (RF), MRCA Discordance
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4 SUPPLEMENTARY ALGORITHMS

Algorithm S1 Simulating the next event and update time and S accordingly. Before running this
procedure, we have computed S and 6, = >, ¢ X" for all & from the previous calls to this function
(i.e., previous time steps). For each a, we have also built an interval tree 7, on leafset S and each
node v storing the summation of x;' for each leaf 7 under v.

procedure SAMPLETREE(«, v)
if v is a leaf node then
return v
else
L <« the sum of x{' for each leaf 7 under left child of v
R < the sum of x{' for each leaf ¢ under right child of v
O <+ the outcome of a flip of a biased coin with probability of being head LJ%R
if O = Head then
return SAMPLETREE(«, the left child of v)
else
return SAMPLETREE(«, the right child of v)

procedure SIMULATINGONEEVENT

Za,ﬁer(Paﬁsﬂea)
Eﬁer QBSB

time <— time + a random sample from exponential distribution where A =

P, 5S°0., _
Za,Ber(P&,ﬁsﬂeé)

(a, B) < arandom sample from distribution Pr(«, 5) =

1 < SAMPLETREE(q, the root of T'«)

E < asample from Pr(E = Birth) = l;jz , Pr(E = Death) = %’Z, Pr(E = Transformation) =

=

a,B
o,B

if £ = Birth then
(j, k) < a sample from distribution of outcomes of birth event of 4
S+ S+x;+xpk
S« SuU{jk}
for o € I" do
0, < 0, + XJO-‘ +x3
add leaves j and k to T}, while keeping the tree balanced using Algorithm S2

if £ = Transformation then
7 < a sample from distribution of outcomes of transformation event of ¢
S« S+ X;
S+ Su{j}
fora € I' do
O < O + x5
add leaf j to T}, while keeping the tree balanced using Algorithm S2

)

S%S*Xi
S+ S —{i}
for o € T' do

0o < 0o — x5
remove leaf ¢ from 7}, making the leaf ready for future additions using Algorithm S2
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Algorithm S2 Exact algorithm for inserting or removing a leaf from tree 7, keeping it balanced.
T, is represented by a full binary tree where each leaf is labeled with either one entity or () and
each node v has weight w, equal to the sum of x' for all leaves under v with label (i) not being ().

Assuming a stack S, keeps all leaves with label ().

procedure ADDWEIGHT(T,, ¢, v, u)
Wy, $— Wy + X5
if v is under left subtree of u then
ADDWEIGHT(T,, %, v, the left child of u)
if v is under right subtree of u then
ADDWEIGHT(T,, 7, v, the right child of u)

procedure INSERTLEAF(T,, )
if S, is empty then

H < the height of T},
T « T,
T, < afull binary tree of height H + 1, all leaves labeled (), and all nodes having weight 0
replace the left subtree of the root of T, with T”
the weight the root of T, < the weight of the left child of the root of T,
push all leaves under right child of the root of T}, into S,

v <— pop one element from .S,
label of v < ¢
ADDWEIGHT(T,, %, v, the root of T},)
procedure REDUCEWEIGHT(T,, i, v, u)
Wy, <= Wy, + X5
if v is under left subtree of u then
REDUCEWEIGHT(T,, %, v, the left child of u)
if v is under right subtree of v then
REDUCEWEIGHT(1}, t, v, the right child of w)
procedure REMOVELEAF(Ty, %)
v < leaf of T,, with label i
label of v < ()
push v onto S,
REDUCEWEIGHT(T,, i, v, the root of T},)
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Recall:
Ly
S 0 6?3 (60 s ™)) sw
i,j€lr] pcCDR q=1

Algorithm S3 Heuristics for choosing target sequences to minimize the objective function (S4).

for: < 2tordo
for ¢ € CDR do
9 o
C(Q) — C£Q)
for p <~ 1to L, do
t < Poisson(k)
for u < 1tot do
q < a uniform random element of CDR where n?’ ) = C@
for i < 2tordo
if ") # 7" then
D 41
¢ %) with probability 1/c(®

i

b < True
while b = True do
b < False
for: < 2tordo
for ¢ € CDR do
for s € nucleotide alphabet do

if replacing Cl-(Q) with s reduces the objective function then
b < True
Q;(Q) —s

Algorithm S4 The computeset algoirthm

Let each label be uniformly randomly assigned to an element in a finite Abelian group with large
enough order (e.g., 64-bit integers). To compute FNR, FDR, and RF, we just need to compute
|o(R)| = |Sg|, |¢(E)| = |Sgl|, and |¢p(R) N ¢(E)| = |Sg N Sg|, where set Sy for tree T' can be
computed by calling COMPUTESET(7", the root of T').
procedure COMPUTESET(T', v)
w < the element assigned to the label of v, if v has label; otherwise, w < 0.
for v in the children of v do
w — w+ COMPUTESET(T, u)
add element w to set St
return w
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