

Supplementary Material

1 Supplementary Figures and Tables

Supplementary Table 1. Details of the Boolean advanced search query: theme, strings, search query, and results, based on the Scopus database (source: the authors).

Theme	Boolean advanced search query	Results
Electrochemical degradation of contaminants with BDD electrodes	TITLE (bdd OR "boron doped diamond" OR "boron-dopeddiamond") AND TITLE (*degradation OR treatment OR remov*OR mineralization OR remediation OR "electrochemical oxidation"OR destruction OR *oxidation OR incineration OR disinfection ORwastewater* OR combustion OR elimination OR decomposition))AND (LIMIT-TO (DOCTYPE, "ar")) AND (LIMIT-TO(LANGUAGE, "English")	Scopus: 875 (04/2022)

Supplementary Table 2. Previously identified commonly used strings for describing the degradation of contaminants with BDD electrodes (source: the authors).

Strings
*degradation (<i>e.g.</i> electrodegradation, degradation)
treatment
remov* (e.g. removal, removing)
mineralization
remediation
"electrochemical oxidation"
destruction
*oxidation (e.g. electrooxidation, electro-oxidation, oxidation)
incineration
disinfection
wastewater* (e.g. wastewater, wastewaters)
combustion
elimination
decomposition

Commercial BDD supplier	Country or Province	Website
3betterdiamond ^e	China	https://www.3betterdiamond.com/
Adamant Innotech S.A. ^a	Switzerland	https://adamant-innotech.ch/
Advanced Diamond Technology	USA	http://www.thindiamond.com/
Antec Scientific	The Netherlands	https://antecscientific.com/
BioLogic ^e	France	https://www.biologic.net/
Boromond ^e	China	https://www.boromond.com/
Condias ^b	Germany	https://www.condias.de/
Creating Nano Technologies Inc	Taiwan	http://www.creating-nanotech.com/
CSEM ^d	Switzerland	https://www.csem.ch/
Diaccon	Germany	https://www.diaccon.de/
Diamond Electric ^e	USA	https://diamond-us.com/
Ecotricity ^e	UK	https://www.ecotricity.co.uk/
EUT GmbH	Germany	https://www.eut-eilenburg.de/
Electrolytic Ozone ^e	USA	http://www.eoi-oxygen.com/
Element Six (De Beers Group)	USA	https://www.e6.com/
Eletrocell	Denmark	https://www.electrocell.com/
Eletrolytica	USA	http://www.electrolytica.com/
ESA Biosciences ^{c,e}	USA	https://www.thermofisher.com/
Evoqua (Magneto Special Anodes B.V.)	The Netherlands	https://www.evoqua.com/
Fraunhofer, CCD - Center for coatings and diamond	USA	https://www.fraunhofer.org/
technologies		
GL Sciences ^e	Japan	https://www.glsciences.com/
Kraftangalen ^e	Germany	https://www.kraftanlagen.com/
Metakem	Germany	https://metakem.de/
Metrohm DropSens ^e	Spain	https://www.dropsens.com/
Neocoat ^a	Switzerland	https://www.neocoat.ch/
Schunk Carbon Technology ^e	Germany	https://www.schunk-
C1 e	0	carbontechnology.com/
Shazay	Germany	https://shazay.com/
sp3 Diamond Technologies	USA	https://www.sp3diamondtech.com/
Sumitomo Electric Industries	Japan	https://sumitomoelectric.com/
Umex	Germany	https://www.umex.de/
* Waterdiam France	France	-
WCS Environmental Engineering Ltde	UK	https://wpldiamond.com/
Weiss Technik ^e	Germany	https://www.weiss-technik.com/
Wesco	USA	https://www.wesco.com/
* Windsor Scientific	UK	-
Zhengzhou Abrasives & Grinding Research Institute Co.	China	http://www.zzsm.com/

Supplementary Table 3. List of commercial BDD suppliers (source: the authors).

^a Spin-off company of CSEM
 ^b Spin-off company of Fraunhofer Institute for Thin Films and Surface Technology

^c Acquisition of Thermo Fischer Scientific ^d Start-ups or joint ventures based on CSEM technologies: NeoCoat and Adamant Innotech S.A.

^e Suppliers not identified in the articles from the bibliometric analysis research

*Liquidation

Supplementary Figure 1. Choice of substrate material based on the bibliometric analysis search (source: the authors).

Supplementary Figure 2. Choice of substrate material along the years, based on the bibliometric analysis search (source: the authors).

Supplementary	Table 4	. Reported studies	on phenol	degradation	using BDD	D electrodes as anodes in its electrooxidation.	
1 I V		1	1	0	0		

BDD	% removal		noval		Energy Consumption			Energy Consumption		Energy Consumption		Energy Consumption		onsumption		E Initial) concentrati		j (mA/cm ²)	t (h)	A (cm ²)	V (mL)	Initial nH	Supporting Electrolyte	Conductivity (mS/cm)	Flow Rate	T (°C)	Electrochemical Characterization	Ref.
	COD	Phenol	тос	kWh/kg COD	kWh/kg phenol	kWh/m ³	kWh/kg TOC	(70)	Phenol (mg/L)	COD (mg/L)	((11)	(em)	(1112)	P	21000101,00	(1115) (111)	(mL/s)	(0)									
In house HFCVD	100%	-	-	112	-	-	-	-	240	548	20	3.2	24	200	3	0.05 M Na ₂ SO ₄ and 2 M H ₂ SO ₄	-	-	10	RE: SCE ES: 0.05 M Na ₂ SO ₄ EPW: -	(Zhao et al., 2009)							
In house MPCVD	-	-	85%	-	-	-	-	-	941.1	-	70-900	~68.5	2	1000	-	0.1 M H ₂ SO ₄	-	7	-	OEP: ~1.8V RE: Pd/H ₂ ES: 0.1 M H ₂ SO ₄ EPW: -	(Hagans et al., 2001)							
In house HFCVD	95%	100%	-	-	-	8.15	-	21.8%	94.11	224	15	~15	1.5	100	2	0.5 M Na ₂ SO ₄	-	-	RT	OEP: 1.5V RE: SCE ES: 0.5 M H ₂ SO ₄ EPW: 1.5 to 2.5 V	(Sun et al., 2012)							
In house HFCVD	94%	-	80%	-	-	27.5 (for 80% removal)	-	15.6%	94.11	-	30	5	16	500	-	0.5 M Na ₂ SO ₄	-	16.67	-	OEP: 2.5V RE: Ag/AgCl ES: 0.5 M H ₂ SO ₄ EPW: 1.9 V	(Lee et al., 2017)							
In house HFCVD	-	-	55%	-	-	-	29	* 18% (MCE)	-	-	50	3	4	250	-	0.1 M Na ₂ SO ₄	-	-	RT	0EP: 1.6 V RE: Ag/AgCl ES: 0.5 M H ₂ SO ₄ EPW: 3.1 V	(Li et al., 2021)							
In house MPCVD	70%	78%	-	-	-	-	-	23.8%	94.11	-	20	5	4	250	12	0.2 M Na ₂ SO ₄	-	-	RT	CEP: 2.2 V RE: SCE ES: 0.2 M Na ₂ SO ₄ EPW: 3.1 V OEP: 2.1 V	(Zhu et al., 2007)							
In house HFCVD	-	90%	-	-	-	-	-	22.3%	470.55	-	60	2,1	50	500	-	1 M HClO ₄	-	-	25	RE: SHE ES: 1 M HClO ₄ EPW: -	(Iniesta, 2001)							
In house HFCVD	51%	-	-	-	-	-	-	-	3.764.4	9153	100	4	3	40	-	H_2SO_4	-	-	-	OEP: 2.3 V RE: SCE ES: - EPW: 3.29 V	(Shi et al., 2020)							
In house HFCVD	96.6%	-	-	-	-	-	-	78.5%	-	1175	10	-	6.25	30	-	2000 mg/L Na ₂ SO ₄	-	-	30	OEP: 2.42 V RE: NHE ES: 0.5 M H ₂ SO ₄ EPW: 3.0 V OEP: 2.4 V	(Chen et al., 2003)							
In house HFCVD	95.7%	-	-	-	-	-	-	-	-	1175	10	-	5	-	4.70– 6.73	1500 mg/L Na ₂ SO ₄	-	-	30	CEP: 2.4 V RE: NHE ES: 0.5 M H ₂ SO ₄ EPW: -	(Chen et al., 2005)							
In house HFCVD	97%	-	-	-	-	-	-	-	50	-	50	-	0.15	-	2–3	0.1 M H ₂ SO ₄	-	-	20	RE: Ag/AgCl ES: 0.1 M H ₂ SO ₄ EPW: 2.4 to 3.5 V	(Kornienko et al., 2011)							
Adamant Technologies	-	93%	-	-	-	-	-	-	941.1	-	-	4	21	80	-	0.5 M H ₂ SO ₄	-	-	-	-	(Pujol et al., 2020)							
Adamant Technologies	-	-	79.8%	-	-	-	-	-	941.1	-	32.5	3	6.16	30	-	0.1 M KNO3	-	-	-	-	(Yoon et al., 2012)							
Adamant Technologies	-	100%	100%	-	-	-	-	-	100	-	2.5	9	40	500	2	0.04 M Na ₂ SO ₄ / 0.05	18.1	12.5	23 ± 2	-	(Espinoza-Montero et al., 2013)							
Adamant Technologies	51%	-	46%	-	-	-	-	76%	300	-	10	10	70	30000	-	0.035 M Na ₂ SO ₄	-	138.89	-	-	(Lopes et al., 2011)							
Adamant Technologies	34- 42%	-	-	-	-	-	-	-	-	1000	30	~4	2.5	150	-	0.035 M Na ₂ SO ₄ / NaOH	-	-	20	RE: SCE ES: Na ₂ SO ₄ EPW: - OEP: 0.5V	(Cañizares et al., 2008)							
Condias	77%	-	-	31	-	-	-	-	-	633	8.5	1.33	2904	4501	-	-	3	0.85- 9 38	-	-	(Zhu et al., 2010b)							
Condias	98.9%	100%	100%	57	-	-	-	19.1%	100	-	30	3.5	78.5	2000	4.8	1100 mg/L Na2SO4	-	-	23 ± 3	-	(Jarrah and Mu'azu, 2016)							

Condias	-	77%	40%	-	-	-	-	-	50	-	9.04	1	77.44	500	-	10 mM NaNO ₂	-	6.68	-	RE: SCE ES: NaNO₃ EPW: - OEP: 1 77 V	(Zhang et al., 2019)
Condias	-	97%	58%	-	-	-	-	-	94.11	-	20	8	4	250	-	0.2 M Na ₂ SO ₄	-	-	25	-	(Jiang et al., 2020)
Condias	-	-	58%	-	-	-	-	-	94.11	-	20	4	4	250	11	0.2 M Na ₂ SO ₄	-	-	25	-	(Jiang et al., 2017)
Condias	-	32%	-	-	-	-	-	-	47.06	-	10	1	2	200	6.50	20 mM Na ₂ SO ₄	-	-	-	RE: Ag/AgCl ES: 20 mM Na ₂ SO ₄ EPW: 2.3 V OEP: 1.93 V	(Chen et al., 2022)
Condias	91%	100%	99%	-	99	-	-	82%	1000	-	30	4.5	78.5	2000	2	1000 mg/L Na2SO4	-	-	-	-	(Dalhat Mu and H. Al-Mala, 2012)
Condias	-	-	-	-	329.52	-	-	19.89%	65.99	135.99	30	0.5	78.5	2000	4.8	1100 mg/L Na ₂ SO ₄	-	-	RT	-	(Mu'azu et al., 2013)
Condias	86%	-	-	-	-	-	-	-	-	-	20	5	4	250	-	0.2 M Na ₂ SO ₄	-	-	25	RE: SCE ES: 0.2 M Na ₂ SO ₄ EPW: - OEP: 2.1 V	(Zhu et al., 2010a)
Condias	80%	-	-	110	-	-	-	-	-	500	19.5	1.15	24	-	-	0.05 M Na ₂ SO ₄	-	-	-	-	(Wei et al., 2011)
Condias	100%	-	-	-	-	-	-	19%	100	-	30	2.5	78.5	2000	-	1100 mg/L Na ₂ SO ₄	-	-	-	-	(Muazu et al., 2014)
Condias	98%	-	-	-	-	-	-	87%	200	-	30	8	8	150	-	-	-	8.35	25	-	(Pacheco et al., 2007)
CSEM	100%	-	-	-	-	-	-	56%	-	2400	30	-	78	-	2	5000 mg/L Na ₂ SO ₄ / H ₂ SO ₄	-	41.67	25	-	(Canizares et al., 2005)
CSEM	99%	-	-	-	-	80	-	-	1882.2	-	47	5	63	990	-	0.1 M H ₂ SO ₄	-	55.55	-	-	(Weiss et al., 2007)
EUT	96%	-	96%	82	-	-	-	23%	280	666	50	5.8	28	-	-	Na ₂ SO ₄	-	-	27-30	RE: Ag/AgCl ES: 0.3 M Na ₂ SO ₄ EPW: - OEP: 1.0 V	(de Souza and Ruotolo, 2013)
EUT	91%	-	94%	26.6	-	-	-	-	-	378	30	8	16	2560	-	$0.1 \ M \ H_2 SO_4$	-	40	30	-	(Farinos and Ruotolo, 2017)
Magneto Special Anodes B.V.	-	99.54%	-	-	470	-	-	-	200	590	5	1.25	176	500	1.97	Na_2SO_4	15.63	-	20	-	(Yavuz et al., 2008)
Umex	78%	-	78%	475	-	-	-	-	210	500	150	8	28	2500	0.76 – 0.87	0.1 M H ₂ SO ₄	-	-	26-28	RE: Ag/AgCl ES: 0.1 M H ₂ SO ₄ EPW: - OEP: 2.0 V	(Britto-Costa and Ruotolo, 2012)
-	~100%	-	-	-	-	-	-	-	1985	-	215	3	7	100	13	0.1 M Na ₂ SO ₄	-	-	30	-	(Bouaziz et al., 2017)
-	99%	-	-	-	-	-	-	-	202- 222	-	30	6.2	10.14	250	7	0.1 M Na ₂ CO ₃	-	-	25	-	(Morão et al., 2004)
-	98%	-	-	-	-	-	-	12.3%	240	548	20	3	24	200	3	0.05 M Na ₂ SO ₄ / 2 M H ₂ SO ₄	-	-	-	RE: SCE ES: 0.05 M Na ₂ SO ₄ EPW: - OEP: ~1 5 V	(Zhao et al., 2008)
-	84%	-	-	-	-	-	-	-	280	666	100	8	70	1500	2.0- 3.5	0.1 M Na ₂ SO ₄ / H ₂ SO ₄ / NaOH	-	-	27–30	-	(Souza and Ruotolo, 2013)
-	-	100%	20%	-	-	-	-	*45% (MCE)	50	-	40	0.5	100	20000	7	-	2480	1111.11	-	-	(Tawabini et al., 2020)
-	-	80.1%	62.5%	-	-	-	-	-	50	-	6.46	2	77.44	500	-	1 mM NaBr	-	6.68	-	RE: SCE ES: 1 mM NaBr EPW: - OEP: 1.9 V	(Zhang et al., 2018)

EC = energy consumption; RT = room temperature; EPW = electrochemical potential window; ES = electrolyte solution; RE =: reference electrode

BDD	COD ₀	COD removal	ACE	EC	j	t	Anode area	Volume	Initial pH	Supporting Electrolyte	Conductivity	Flow Rate	Т	Electrochemical characterization	Ref.
	(mg O ₂ /L)	(%)	(%)	(kWh/kg COD)	(mA/cm ²)	(h)	(cm²)	(mL)	-	·	(mS/cm)	(mL/s)	(°C)		
In house HFCVD	3778.56 ± 42.91	87.5%	41.7%	*223.2	50	6	24	200	5.16 ± 0.12	1 M NaOH	40.16 ± 0.25	1.67	-	ES: 1 M H ₂ SO ₄	(Zhou et al., 2016)
				KWn/m ³										RE: Ag/AgCl	
														EPW: 3.0 V	
														OEP: 2.3 V	
In house MPCVD	3608 ± 123	91%	28%	285	100	4	10.5	400	7.8-9.4	-	-	-	25 ± 1	ES: 1 M KCl	(Wilk et al., 2021)
														RE: Ag/AgCl	
														EPW: 3.9 V	
														OEP: 1.4 V	
In house MPCVD	4002.11 ± 13.12	69%	43.9%	*215.4 kWh/m3	50	5.5	30	200	6.01 ± 0.01	-	12.4 ± 0.1	1.53	-	ES: 0.5 M H ₂ SO ₄	(Zhao, 2021)
														RE: Ag/AgCl	
														EPW: 2.2 V	
														OEP: 1.6 V	
Adamant Technologies	1130	100%	-	-	15-90	6-8	70	1000	7.51	-	14.36	183.33	20		(Cabeza et al., 2007)
CSEM	780	100%	24.5%	*150 kWh/m ³	40	4	50	350	8.20	-	9.77	116.67	25		(Panizza and Martinez-Huitle, 2013)
Adamant Technologies	3385	51%	-	102-134 (for 30% removal)	90-120	8	70	10000	8.4	NaCl	22.6	166.67	-		(Anglada et al., 2011)
Adamant Technologies	860	100%	-	-	30-120	4-8	10500	230000	-	-	9.4	5000	-		(Anglada et al., 2009)
Condias	5800	88%	-	-	30	6	10	200	8.4 ± 0.4	0.03 M	22.1	-	25		(Fernandes et al., 2012)
										Na_2SO_4					
Fraunhofer	1168	93%	-	5.7	37.5	8	8	2000	5	Na ₂ SO ₄		7	-		(Bagastyo et al., 2020)
NeoCoat	6200 ± 400	40%	-	*64 kWh/m³	30	6	10	200	9.0 ± 0.1	-	22.0 ± 1.2	-	22–25		(Fernandes et al., 2014)
De Nora	3308-3540	95.17%	14.4%	160	83	8	6	-	2	NaOH or H ₂ SO ₄	17.3–18.5	2.78	-		(Luu, 2020)
-	2040	49%	-	86.4	100	7	8	1000	8.5	-	10.74	2	-		(Agustina et al., 2019)
-	2011	74%	-	-	50	4	8	1000	3	0.05 M NaCl		5	-		(Nurhayati et al., 2020)
-	816	87%	193%	45.8	67	8	6	2000	6	H_2SO_4	2.91	5	-		(Bagastyo et al., 2021)
-	888	92%	21.68%	136.0	36	4	84	950	7.65	-	19.31	-	-		(Ukundimana et al., 2018)

Supplementary Table 5. Reported studies on landfill leachate degradation using BDD electrodes as anodes in its electrooxidation.

 $EC = energy \ consumption; \ EPW = electrochemical \ potential \ window; \ ES = electrolyte \ solution; \ RE = reference \ electrode$

References

- Agustina, F., Bagastyo, A.Y., and Nurhayati, E. (2019). Electro-oxidation of landfill leachate using boron-doped diamond: role of current density, pH and ions. *Water Sci Technol* 79(5), 921-928. doi: 10.2166/wst.2019.040.
- Anglada, A., Urtiaga, A., and Ortiz, I. (2009). Pilot scale performance of the electro-oxidation of landfill leachate at boron-doped diamond anodes. *Environ Sci Technol* 43(6), 2035-2040. doi: 10.1021/es802748c.
- Anglada, A., Urtiaga, A., Ortiz, I., Mantzavinos, D., and Diamadopoulos, E. (2011). Boron-doped diamond anodic treatment of landfill leachate: evaluation of operating variables and formation of oxidation by-products. *Water Res* 45(2), 828-838. doi: 10.1016/j.watres.2010.09.017.
- Bagastyo, A.Y., Hidayati, A.S., Herumurti, W., and Nurhayati, E. (2021). Application of borondoped diamond, Ti/IrO2, and Ti/Pt anodes for the electrochemical oxidation of landfill leachate biologically pretreated by moving bed biofilm reactor. *Water Sci Technol* 83(6), 1357-1368. doi: 10.2166/wst.2021.060.
- Bagastyo, A.Y., Novitasari, D., Nurhayati, E., and Direstiyani, L.C. (2020). Impact of sulfate ion addition on electrochemical oxidation of anaerobically treated landfill leachate using boron-doped diamond anode. *Research on Chemical Intermediates* 46(11), 4869-4881. doi: 10.1007/s11164-020-04243-3.
- Bouaziz, I., Hamza, M., Sellami, A., Abdelhedi, R., Savall, A., and Groenen Serrano, K. (2017). New hybrid process combining adsorption on sawdust and electroxidation using a BDD anode for the treatment of dilute wastewater. *Separation and Purification Technology* 175, 1-8. doi: 10.1016/j.seppur.2016.11.020.
- Britto-Costa, P.H., and Ruotolo, L.A.M. (2012). Phenol removal from wastewaters by electrochemical oxidation using boron doped diamond (BDD) and Ti/Ti0.7Ru0.3O2 dsa® electrodes. *Brazilian Journal of Chemical Engineering* 29(4), 763-773. doi: 10.1590/s0104-66322012000400008.
- Cabeza, A., Urtiaga, A.M., and Ortiz, I. (2007). Electrochemical Treatment of Landfill Leachates Using a Boron-Doped Diamond Anode. *Industrial & Engineering Chemistry Research* 46(5), 1439-1446. doi: 10.1021/ie061373x.
- Canizares, P., Lobato, J., Paz, R., Rodrigo, M.A., and Saez, C. (2005). Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. *Water Res* 39(12), 2687-2703. doi: 10.1016/j.watres.2005.04.042.
- Cañizares, P., Sáez, C., Martínez, F., and Rodrigo, M.A. (2008). The Role of the Characteristics of p-Si BDD Anodes on the Efficiency of Wastewater Electro-oxidation Processes. *Electrochemical and Solid-State Letters* 11(7), E15-E19. doi: 10.1149/1.2916436.
- Chen, P., Mu, Y., Chen, Y., Tian, L., Jiang, X.H., Zou, J.P., et al. (2022). Shifts of surface-bound *OH to homogeneous *OH in BDD electrochemical system via UV irradiation for enhanced degradation of hydrophilic aromatic compounds. *Chemosphere* 291(Pt 2), 132817. doi: 10.1016/j.chemosphere.2021.132817.

- Chen, X., Chen, G., Gao, F., and Yue, P.L. (2003). High-performance Ti/BDD electrodes for pollutant oxidation. *Environ Sci Technol* 37(21), 5021-5026. doi: 10.1021/es026443f.
- Chen, X., Gao, F., and Chen, G. (2005). Comparison of Ti/BDD and Ti/SnO2?Sb2O5 electrodes for pollutant oxidation. *Journal of Applied Electrochemistry* 35(2), 185-191. doi: 10.1007/s10800-004-6068-0.
- Dalhat Mu, N., and H. Al-Mala, M. (2012). Influence of Some Operating Parameters on Electro-Oxidation of Phenol using Boron Doped Diamond Anode and Graphite Cathode. *Journal of Environmental Science and Technology* 5(6), 460-474. doi: 10.3923/jest.2012.460.474.
- de Souza, R.B.A., and Ruotolo, L.A.M. (2013). Phenol electrooxidation in different supporting electrolytes using boron-doped diamond anodes. *International Journal of Electrochemical Science* 8(1), 643-657.
- Espinoza-Montero, P.J., Vasquez-Medrano, R., Ibanez, J.G., and Frontana-Uribe, B.A. (2013).
 Efficient Anodic Degradation of Phenol Paired to Improved Cathodic Production of H2O2at
 BDD Electrodes. *Journal of The Electrochemical Society* 160(7), G3171-G3177. doi: 10.1149/2.027307jes.
- Farinos, R.M., and Ruotolo, L.A.M. (2017). Comparison of the electrooxidation performance of three-dimensional RVC/PbO2 and boron-doped diamond electrodes. *Electrochimica Acta* 224, 32-39. doi: 10.1016/j.electacta.2016.12.025.
- Fernandes, A., Pacheco, M.J., Ciriaco, L., and Lopes, A. (2012). Anodic oxidation of a biologically treated leachate on a boron-doped diamond anode. *J Hazard Mater* 199-200, 82-87. doi: 10.1016/j.jhazmat.2011.10.074.
- Fernandes, A., Santos, D., Pacheco, M.J., Ciríaco, L., and Lopes, A. (2014). Nitrogen and organic load removal from sanitary landfill leachates by anodic oxidation at Ti/Pt/PbO2, Ti/Pt/SnO2-Sb2O4 and Si/BDD. *Applied Catalysis B: Environmental* 148-149, 288-294. doi: 10.1016/j.apcatb.2013.10.060.
- Hagans, P.L., Natishan, P.M., Stoner, B.R., and O'Grady, W.E. (2001). Electrochemical Oxidation of Phenol Using Boron-Doped Diamond Electrodes. *Journal of The Electrochemical Society* 148(7), E298-E301. doi: 10.1149/1.1376638.
- Iniesta, J. (2001). Electrochemical oxidation of phenol at boron-doped diamond electrode. *Electrochimica Acta* 46(23), 3573-3578. doi: 10.1016/s0013-4686(01)00630-2.
- Jarrah, N., and Mu'azu, N.D. (2016). Simultaneous electro-oxidation of phenol, CN–, S2– and NH4+ in synthetic wastewater using boron doped diamond anode. *Journal of Environmental Chemical Engineering* 4(3), 2656-2664. doi: 10.1016/j.jece.2016.04.011.
- Jiang, H., Dang, C., Liu, W., and Wang, T. (2020). Radical attack and mineralization mechanisms on electrochemical oxidation of p-substituted phenols at boron-doped diamond anodes. *Chemosphere* 248, 126033. doi: 10.1016/j.chemosphere.2020.126033.
- Jiang, Y., Zhu, X., and Xing, X. (2017). Electrochemical Oxidation of Phenolic Compounds at Boron-Doped Diamond Anodes: Structure-Reactivity Relationships. J Phys Chem A 121(22), 4326-4333. doi: 10.1021/acs.jpca.7b02630.

- Kornienko, G.V., Chaenko, N.V., Maksimov, N.G., Kornienko, V.L., and Varnin, V.P. (2011). Electrochemical oxidation of phenol on boron-doped diamond electrode. *Russian Journal of Electrochemistry* 47(2), 225-229. doi: 10.1134/s102319351102011x.
- Lee, C.-H., Lee, E.-S., Lim, Y.-K., Park, K.-H., Park, H.-D., and Lim, D.-S. (2017). Enhanced electrochemical oxidation of phenol by boron-doped diamond nanowire electrode. *RSC Advances* 7(11), 6229-6235. doi: 10.1039/c6ra26287b.
- Li, H., Yang, W., Ma, L., Liu, G., Yu, Y., Cao, J., et al. (2021). 3D-printed highly ordered Ti networks-based boron-doped diamond: An unprecedented robust electrochemical oxidation anode for decomposition of refractory organics. *Chemical Engineering Journal* 426. doi: 10.1016/j.cej.2021.131479.
- Lopes, A., Ciríaco, L., Pacheco, M.J., and Sobreira, S. (2011). Effect of the Hydrodynamic Conditions on the Electrochemical Degradation of Phenol on a BDD Anode. *Portugaliae Electrochimica Acta* 29(5), 343-348. doi: 10.4152/pea.201105343.
- Luu, T.L. (2020). Post treatment of ICEAS-biologically landfill leachate using electrochemical oxidation with Ti/BDD and Ti/RuO2 anodes. *Environmental Technology & Innovation* 20. doi: 10.1016/j.eti.2020.101099.
- Morão, A., Lopes, A., Pessoa de Amorim, M.T., and Gonçalves, I.C. (2004). Degradation of mixtures of phenols using boron doped diamond electrodes for wastewater treatment. *Electrochimica Acta* 49(9-10), 1587-1595. doi: 10.1016/j.electacta.2003.11.020.
- Mu'azu, N.D., Al-Malack, M.H., and Jarrah, N. (2013). Electrochemical oxidation of low phenol concentration on boron doped diamond anodes: optimization via response surface methodology. *Desalination and Water Treatment* 52(37-39), 7293-7305. doi: 10.1080/19443994.2013.831792.
- Muazu, N.D., Jarrah, N., and Bukhari, A. (2014). Kinetic modeling of electrochemical oxidation of phenol on boron-doped diamond anode in the presence of some inorganic species. *Desalination and Water Treatment* 56(11), 1-8. doi: 10.1080/19443994.2014.964329.
- Nurhayati, E., Bagastyo, A.Y., Hartatik, D.D., and Direstiyani, L.C. (2020). The enhancement of biodegradability index of mature landfill leachate by electrochemical oxidation process using boron-doped diamond and dimensionally stable anode. *Research on Chemical Intermediates* 46(11), 4811-4822. doi: 10.1007/s11164-020-04242-4.
- Pacheco, M.J., Morão, A., Lopes, A., Ciríaco, L., and Gonçalves, I. (2007). Degradation of phenols using boron-doped diamond electrodes: A method for quantifying the extent of combustion. *Electrochimica Acta* 53(2), 629-636. doi: 10.1016/j.electacta.2007.07.024.
- Panizza, M., and Martinez-Huitle, C.A. (2013). Role of electrode materials for the anodic oxidation of a real landfill leachate--comparison between Ti-Ru-Sn ternary oxide, PbO(2) and borondoped diamond anode. *Chemosphere* 90(4), 1455-1460. doi: 10.1016/j.chemosphere.2012.09.006.
- Pujol, A.A., León, I., Cárdenas, J., Sepúlveda-Guzmán, S., Manríquez, J., Sirés, I., et al. (2020). Degradation of phenols by heterogeneous electro-Fenton with a Fe3O4-chitosan composite and a boron-doped diamond anode. *Electrochimica Acta* 337. doi: 10.1016/j.electacta.2020.135784.

- Shi, L., Xu, F., Gao, J., Yuen, M., Sun, S., Xu, J., et al. (2020). Nanostructured boron-doped diamond electrode for degradation of the simulation wastewater of phenol. *Diamond and Related Materials* 109, 108098. doi: 10.1016/j.diamond.2020.108098.
- Souza, R.B.A., and Ruotolo, L.A.M. (2013). Electrochemical treatment of oil refinery effluent using boron-doped diamond anodes. *Journal of Environmental Chemical Engineering* 1(3), 544-551. doi: 10.1016/j.jece.2013.06.020.
- Sun, J., Lu, H., Lin, H., Du, L., Huang, W., Li, H., et al. (2012). Electrochemical oxidation of aqueous phenol at low concentration using Ti/BDD electrode. *Separation and Purification Technology* 88, 116-120. doi: 10.1016/j.seppur.2011.12.022.
- Tawabini, B.S., Plakas, K.V., Fraim, M., Safi, E., Oyehan, T., and Karabelas, A.J. (2020). Assessing the efficiency of a pilot-scale GDE/BDD electrochemical system in removing phenol from high salinity waters. *Chemosphere* 239, 124714. doi: 10.1016/j.chemosphere.2019.124714.
- Ukundimana, Z., Omwene, P.I., Gengec, E., Can, O.T., and Kobya, M. (2018). Electrooxidation as post treatment of ultrafiltration effluent in a landfill leachate MBR treatment plant: Effects of BDD, Pt and DSA anode types. *Electrochimica Acta* 286, 252-263. doi: 10.1016/j.electacta.2018.08.019.
- Wei, J., Zhu, X., and Ni, J. (2011). Electrochemical oxidation of phenol at boron-doped diamond electrode in pulse current mode. *Electrochimica Acta* 56(15), 5310-5315. doi: 10.1016/j.electacta.2011.04.006.
- Weiss, E., Groenen-Serrano, K., and Savall, A. (2007). A comparison of electrochemical degradation of phenol on boron doped diamond and lead dioxide anodes. *Journal of Applied Electrochemistry* 38(3), 329-337. doi: 10.1007/s10800-007-9442-x.
- Wilk, B.K., Szopinska, M., Luczkiewicz, A., Sobaszek, M., Siedlecka, E., and Fudala-Ksiazek, S. (2021). Kinetics of the Organic Compounds and Ammonium Nitrogen Electrochemical Oxidation in Landfill Leachates at Boron-Doped Diamond Anodes. *Materials (Basel)* 14(17). doi: 10.3390/ma14174971.
- Yavuz, Y., Koparal, A.S., and Öğütveren, Ü.B. (2008). Phenol Degradation in a Bipolar Trickle Tower Reactor Using Boron-Doped Diamond Electrode. *Journal of Environmental Engineering* 134(1), 24-31. doi: 10.1061/(asce)0733-9372(2008)134:1(24).
- Yoon, J.-H., Shim, Y.-B., Lee, B.-S., Choi, S.-Y., and Won, M.-S. (2012). Electrochemical Degradation of Phenol and 2-Chlorophenol Using Pt/Ti and Boron-Doped Diamond Electrodes. *Bulletin of the Korean Chemical Society* 33(7), 2274-2278. doi: 10.5012/bkcs.2012.33.7.2274.
- Zhang, C., Dong, J., Liu, M., Zhao, W., and Fu, D. (2019). The role of nitrite in electrocatalytic oxidation of phenol: An unexpected nitration process relevant to groundwater remediation with boron-doped diamond electrode. *J Hazard Mater* 373, 547-557. doi: 10.1016/j.jhazmat.2019.03.118.
- Zhang, C., Xian, J., Liu, M., and Fu, D. (2018). Formation of brominated oligomers during phenol degradation on boron-doped diamond electrode. *J Hazard Mater* 344, 123-135. doi: 10.1016/j.jhazmat.2017.10.010.

- Zhao, G., Gao, J., Shen, S., Liu, M., Li, D., Wu, M., et al. (2009). Ultrasound enhanced electrochemical oxidation of phenol and phthalic acid on boron-doped diamond electrode. J Hazard Mater 172(2-3), 1076-1081. doi: 10.1016/j.jhazmat.2009.07.113.
- Zhao, G., Shen, S., Li, M., Wu, M., Cao, T., and Li, D. (2008). The mechanism and kinetics of ultrasound-enhanced electrochemical oxidation of phenol on boron-doped diamond and Pt electrodes. *Chemosphere* 73(9), 1407-1413. doi: 10.1016/j.chemosphere.2008.08.008.
- Zhao, Y. (2021). Electrochemical Oxidation Treatment of Municipal Solid Waste Landfill Leachate Using Pt Nanoparticles Modified Boron- Doped Diamond Electrode. *International Journal of Electrochemical Science* 16, 1-13. doi: 10.20964/2021.04.60.
- Zhou, B., Yu, Z., Wei, Q., Long, H., Xie, Y., and Wang, Y. (2016). Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode. *Applied Surface Science* 377, 406-415. doi: 10.1016/j.apsusc.2016.03.045.
- Zhu, X., Ni, J., Li, H., Jiang, Y., Xing, X., and Borthwick, A.G.L. (2010a). Effects of ultrasound on electrochemical oxidation mechanisms of p-substituted phenols at BDD and PbO2 anodes. *Electrochimica Acta* 55(20), 5569-5575. doi: 10.1016/j.electacta.2010.04.072.
- Zhu, X., Ni, J., Wei, J., Xing, X., Li, H., and Jiang, Y. (2010b). Scale-up of BDD anode system for electrochemical oxidation of phenol simulated wastewater in continuous mode. *J Hazard Mater* 184(1-3), 493-498. doi: 10.1016/j.jhazmat.2010.08.062.
- Zhu, X., Shi, S., Wei, J., Lv, F., Zhao, H., Kong, J., et al. (2007). Electrochemical oxidation characteristics of p-substituted phenols using a boron-doped diamond electrode. *Environ Sci Technol* 41(18), 6541-6546. doi: 10.1021/es070955i.