
   

Supplementary Material 

Inference of Dynamic Interaction Networks: 

A Comparison Between Lotka-Volterra and Multivariate 

Autoregressive Models 

Daniel V. Olivença, Jacob D. Davis, Eberhard O. Voit 

 

1 Models and Methods 

1.1 Lotka-Volterra models 

For a single variable, Lotka-Volterra (LV) models (Eq. (1)) in the main text) reduce to the well-known 

logistic growth law 

𝑑𝑋𝑖

𝑑𝑡
= 𝑎𝑖𝑋𝑖 − 𝑏𝑖𝑖𝑋𝑖

2,  [ S1 ] 

where the ratio 𝑎𝑖/𝑏𝑖𝑖 is called the “carrying capacity” of the system, which corresponds to the non-

trivial steady state (Vogels et al., 1975). If time-dependent environmental inputs are to be considered, 

one may add one or more terms 𝛾𝑖𝑘𝑋𝑖𝑈𝑘, where 𝑈𝑘 is the kth element of a vector of these inputs and 

the coefficients 𝛾𝑖𝑘 are weights that quantify the effects of the factors on species Xi (Dam et al., 2020, 

2016; Stein et al., 2013). The left-hand side is often written as �̇�𝑖. 

The LV system is a canonical model in the sense that its mathematical structure is immutable and 

scalable to any dimension (Voit, 2000). Such a canonical model may serve as a template to construct 

models of different systems that reasonably satisfy the following assumptions (Fort, 2020):  

• encounters between and within species are representable by mass action kinetics;  

• the environment does not change during the process, unless environmental variables are 

explicitly formulated as described above;  

• the parameter values do not change during a simulation experiment; 

• the species respond to one another instantaneously; 

• for very small population sizes, interactions are negligible and the change (growth) of each 

population over time is initially proportional to its size, resulting in initial exponential growth; 

• adaptations of species are absent or negligible.  

Although the model structure and these assumptions might appear to be unduly rigid, LV models are 

extremely rich in the repertoire of their possible responses. In fact, the LV structure was shown to be 
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capable of modeling any type of differentiable nonlinearities, including different kinds of oscillations 

and chaos (Vano et al., 2006), if sufficiently many auxiliary variables are permitted, which have 

mathematical, but often no real biological meaning (Peschel and Mende, 1986; Savageau and Voit, 

1987; Voit and Savageau, 1986). At the same time, the LV structure without auxiliary variables has 

intrinsic limitations. For example, it is not well suited for metabolic pathway systems, because a simple 

conversion of a substrate X1 into a product X2 would require X2 to appear in its own synthesis term, 

although the generation of X2 depends in truth only on X1 and possibly some modulators (see (Voit, 

2013) for this and other limitations).  

LV models were initially used to describe the dynamics of predator and prey populations or of 

populations that compete for the same resources, but the same equations have also been used in entirely 

different contexts and fields, including physics (Hacinliyan et al., 2010; Nambu, 1986), pollution 

assessment (Haas, 1981), economy (Gandolfo, 2008; Zhou and Chen, 2006), manufacturing (Chiang, 

2012), and sales (Hung et al., 2017).  

Beyond the fact that LV models can be formulated very easily, another significant advantage over other 

systems of nonlinear ODEs is the fact that the parameter values of LV models can be estimated with 

linear regression methods if time series data are available (Voit and Chou, 2010). As an intriguing 

alternative, the linearity also permits us to select the values of variables and slopes at n+1 time points 

and to obtain parameter inferences by solving a set of linear algebraic equations (see below). It is 

furthermore possible to estimate parameter values from sufficiently many steady-state abundance 

profiles of species that initially coexist under comparable conditions but ultimately survive in different 

proportions (Voit et al., 2021; Xiao et al., 2017). 

1.2 Estimation of LV Parameters Based on Slopes of Time Courses 

This section explains in some detail an approach to parameter estimation that uses the Algebraic Lotka-

Volterra Inference (ALVI) method. For a detailed explanation of the ALVI method itself, see (Voit et 

al., 2021). 

1.2.1 Smoothing 

Even though one might consider the smoothing task of raw data as a conceptually separate issue from 

the actual parameter inference, the two are so closely intertwined in our analysis that it appears useful 

to discuss a few options. The goal of smoothing is two-fold. First, it is beneficial to reduce or even 

remove noise from the raw data, and second, this smoothing greatly aids the determination of slopes 

of the experimentally observed time courses (see later). 

We explored a number of methods for smoothing time course data and keeping noise in check (Batista 

Júnior and Pires, 2014; Eilers, 2003; Vilela et al., 2007), cognizant of the fact that empirical raw data 

alone do not provide enough information of what is noise and what is relevant signal in the dynamics 

of the phenomenon under study. In this analysis, smoothing splines and local regression methods like 

LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot 

smoothing) turned out to be particularly useful. A detailed description of these methods can be found 

in (Cleveland, 1981).  

In a nutshell, (regular) splines are piecewise polynomial functions that: (1) pass through all sample 

points; (2) are continuous; and (3) have first and second derivatives that are continuous at junction 

points between adjacent intervals. In a smoothing spline, the first condition is substituted by a least-
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squares fit that is balanced with an additional criterion that penalizes splines with high second 

derivative values, which indicate local roughness (Cleveland, 1979; Garcia, 2010; Loader, 2012).  

LOWESS and LOESS algorithms use locally weighted polynomial regression. LOWESS is used for 

univariate smoothing and consists of computing a series of local linear regressions, with each local 

regression restricted to a window of x-values. Smoothness is achieved by using overlapping windows 

and by gradually down-weighing points in each regression according to their distance from the anchor 

point of the window. LOESS was developed for fitting a smooth surface to multivariate data. It is a 

generalization of LOWESS in that locally weighted univariate regressions are replaced by locally 

weighted multiple regressions. While LOESS is more versatile, LOWESS is faster and sometimes 

succeeds when LOESS fails (Cleveland, 1979; Cleveland and Devlin, 1988; Smyth, 2020). Locally-

weighted polynomial regression methods have ‘span’ and splines have ‘degrees of freedom,’ which 

are parameters that control the degree of smoothing. 

If we select many points from the smoothing spline, we overcome the problem of data scarcity that is 

inherent in many datasets. In fact, sampling from the smoothing spline allows the subsequent parameter 

inference method to access a larger amount of information and thereby to mitigate noise amplification.  

As mentioned in the Main Text, smoothing requires caution as it may obscure the true signal. A simple 

example is shown in Figure S11.  

1.2.2 Slope Estimation 

Independent of the options and intricacies of obtaining smoothed time courses of all variables, it is well 

known that the estimation of slopes from data is more strongly affected by noise than the data 

themselves (Knowles and Renka, 2014). Expressed differently, if the noise is left unchecked, its effect 

on the estimated values of the slopes tends be higher than its effect on the values of the variables. This 

observation mandates means of obtaining good slope estimates. 

One of the simplest approaches is the three-point method for data at equally spaced time points, where 

the slope of a trajectory at time point tk is taken as the average of the slopes at time points tk-1 and tk+1 

(Burden et al., 1993; Voit and Almeida, 2003). More sophisticated methods were reviewed in (Batista 

Júnior and Pires, 2014; Cleveland and Grosse, 1991; Eilers and Marx, 1996; Vilela et al., 2007). For 

long, dense time series, moving average and collocation methods with or without roughness penalty 

(Ramsay et al., 2007) are often very effective. However, they tend to be unsuited for biological time 

series data because biological measurements are usually quite sparse and obtained over a relatively 

short time horizon.  

An alternative that is usually superior is smoothing, as described in the previous section. The main 

result of smoothing with splines is a reduction or even removal of what is believed to be noise in the 

data. An important consequence is that the slope at each point can be computed directly from the 

smoothing spline, which after all is an explicit function. This step of slope determination offers two 

options: it allows us to estimate slopes exclusively for the measured data points or to sample the 

smoothing function for any number of other points, which yields a larger set of numerical values for 

variables and slopes (Voit and Almeida, 2004).   

1.2.3 Conversion of ODEs into systems of algebraic equations 

If data are available as time series, it is mathematically feasible and beneficial to estimate slopes (for 

instance, from smoothing splines) and to convert the inference problem from one based on ODEs into 
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one exclusively using algebraic functions (Varah, 1982; Voit and Almeida, 2004; Voit and Savageau, 

1982a, 1982b), as it is reviewed below. 

Suppose the growth and interaction parameters of an LV system are to be estimated from time series 

data of the dependent variables Xi. The smoothing of these data facilitates the estimation of slopes 

Sm(Xi) of the trajectories of all variables at a set of time points tm, m = 1, …, M. These time points may 

or may not correspond to the measured data. In fact, the smoothing permits the computation of slopes 

at arbitrarily many time points within the observation interval. However the slopes are computed, they 

correspond to the derivatives of the spline of Xi at the given time points. Substituting numerical values 

of all variables and slopes from the smoothing splines into Eq. (1) of the Main Text yields a system of 

n  M linear algebraic equations containing all system parameters: 

𝑆𝑖(𝑡𝑚) = 𝑎𝑖𝑋𝑖(𝑡𝑚) + ∑ 𝑏𝑖𝑗𝑋𝑖(𝑡𝑚)𝑋𝑗(𝑡𝑚),     𝑖 = 1, … , 𝑛;    𝑚 = 1, … , 𝑀  𝑛
𝑗=1   [ S2 ] 

If environmental inputs 𝛾𝑖𝑘𝑋𝑖𝑈𝑘 are to be considered as well, they are added to the equations and 

substituted with numerical values, if known; if not, their rates 𝛾𝑖𝑘 are estimated together with the 

parameters 𝑎𝑖 and 𝑏𝑖𝑗. 

A caveat of this conversion of ODEs into a system of algebraic equations is a possible time warp (see 

end of Chapter 5 of (Voit, 2017)). The reason is that time is explicitly eliminated from the procedure. 

Nonetheless, this type of slope-based estimation usually provides good results, or at least good initial 

guesses for other optimization approaches, such as traditional gradient methods, as we demonstrated 

with the case in Figure 4c. 

Suppose the dependent variables are not zero within the dataset obtained from smoothing. If so, we 

can divide both sides of the M equations for Xi in Eq. [ S2 ] by the value of the dependent variable at 

the appropriate time point. This step is not mandatory but explicitly linearizes the equations. The case 

of variables with values of zero is typically not very interesting or can be handled by eliminating the 

variable or parts of the time series. 

1.2.4 Parameter inference 

Once all differentials are replaced with estimated slopes, the inference of parameter values for LV-

models offers two options: because the system of algebraic equations is linear in the parameters, we 

may optimize all parameter values through simple multivariate linear regression (ALVI-LR), where 

we may use either all data points or iterate the regression with subsets of points, which naturally leads 

to an ensemble of well-fitting models.  

An interesting alternative is to use just n+1 of the data points and slopes of each variable, if n is the 

number of variables, which results in a system of linear equations that can be solved with simple 

algebraic matrix inversion (ALVI-MI). Again, choosing different data points leads to many solutions. 

The best of these are retained and naturally lead to an ensemble of solutions. These can be further 

analyzed, for instance, with respect to unrealistic over- or undershoots, model robustness and 

identifiability. They can also be used to determine to what degree the LV format is adequate for the 

available data (Voit et al., 2021). 
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1.2.5 Example of Algebraic LV Inference (ALVI) 

To illustrate the parameter estimation procedure with ALVI, we use the noisy LV dataset presented in 

in Table S1.2. First, we smooth the data with a spline or LOESS. For this illustration, we explored 

different options and, in the end, chose 5, 8, 11 and 5DF-splines for X1, X2, X3 and X4, respectively. We 

then computed the first derivatives of the splines to estimate the slopes at various time points. At this 

juncture, we may ignore the raw data and only use the spline values, or we could instead use the original 

data, especially if we think they characterize the studied phenomenon well. In our experience, using 

the spline usually produces better results in the case of noisy LV data. 

As an example, consider the first differential equation and the first datapoint, at t = 1: 

𝑑𝑋1

𝑑𝑡
(1) = 𝑎1𝑋1(1) + 𝑏11𝑋1(1)𝑋1(1) + 𝑏12𝑋1(1)𝑋2(1) + 𝑏13𝑋1(1)𝑋3(1) + 𝑏14𝑋1(1)𝑋4(1) 

We substitute numerical values for the slope and for all variables on the system equations, 

Time Slope_X1 X1 X2 X3 X4 

1 0.039 1.263 0.363 1.778 0.001 

 

which yields 

0.039 = 𝑎1 × (1.263) + 𝑏11 × (1.263)2 + 𝑏12 × (1.263 ) × (0.363) 

                               +𝑏13 × (1.263) × (1.778) + 𝑏14 × (1.263 ) × (0.001). 

 

The same steps are performed for every equation and every chosen time point. The result is a system 

of linear equations with as many equations as chosen time points; each equation has n+1 = 5 unknown 

parameters, where n = 4 corresponds to the number of dependent variables.  

Now we have two options: We may use linear regression (ALVI-LR) or matrix inversion (ALVI-MI). 

ALVI-LR uses every equation and every chosen time point and performs linear regression to produce 

estimates for the parameters. For the alternative of ALVI-MI, we choose some sample of data points 

that, when combined with the equations, generates a number of equations equal to the number of 

parameters to be estimated. If these equations are linearly independent, the system is solvable and the 

solution is unique, allowing us to obtain estimates for the parameters by simple matrix inversion. 

Examples of results can be found throughout the Main Text. 

1.3 Multivariate AutoRegressive (MAR) models 

Multivariate autoregressive (MAR) models are discrete recursive models. Their format is shown in           

Eq. (3) and (4) of the Main Text. (Holmes et al., 2020) 

(Certain et al., 2018; Ives, 1995)The initial MAR models may be augmented with state variables that 

simulate the observation process, and these models are called Multivariate Autoregressive(1) State-

Space Models (Certain et al., 2018; Holmes et al., 2012); we will not analyze these as it would distract 
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from our main focus. Moreover, for the comparisons in this study, we are not considering the influence 

of environmental variables, so the corresponding  terms will be omitted henceforth.  

It is considered an advantage in ecology if models explicitly take the influence of environmental factors 

into account (Certain et al., 2018; Hytti et al., 2006), which is the case for MAR. The availability of 

estimation software like MARSS (Holmes et al., 2020, 2012) has greatly increased the appeal of MAR 

models see Section 1.5). 

1.4 Structural similarities between modeling formats 

The two modeling formats appear to be rather different mathematically, with one consisting of systems 

of ODEs and the other one of discrete-recursive equations. Nonetheless, they can be compared in terms 

of practical considerations (see Main Text) and also with respect to their mathematical representations 

(below). These comparisons demonstrate that the two models can behave quite similarly if the 

community of populations operates relatively close to a stable steady state. By contrast, if their 

abundances vary widely, the two models often show strongly diverging results, as the linearity of the 

MAR model can deviate considerably from the nonlinearities of the LV model. 

Purely considered on mathematical grounds, MAR is defined recursively in Eqs. (3) and (4) of the 

Main Text. By omitting environmental variables, we directly obtain 

𝑋𝑖,𝑡+1 = 𝛼𝑖 + ∑ 𝛽𝑖𝑗
𝑛
𝑗=1 𝑋𝑗,𝑡 + 𝑤𝑖,𝑡;    𝑖 = 1,2, … , 𝑛;     𝑤𝑖,𝑛  ∼ 𝑁(0, 𝛿𝑖).  [ S3 ] 

Suppose the dynamics of the MAR model operates near the steady state of the differential equations, 

so that 𝑋𝑖,𝑡+1 − 𝑋𝑖,𝑡 ≈ 0 for all i. If so, we obtain  

𝑋𝑖,𝑡+1 − 𝑋𝑖,𝑡 ≈ 0 

⇔ 𝛼𝑖 + ∑ 𝛽𝑖𝑗
𝑛
𝑗=1 𝑋𝑗,𝑡 + 𝑤𝑖,𝑡 − 𝑋𝑖,𝑡 ≈ 0;    𝑖 = 1,2, … , 𝑛;   𝑤𝑖,𝑛  ∼ 𝑁(0, 𝛿𝑖).  [ S4 ] 

The similarity between the LV model and [ S3 ] and [ S4 ] can be seen if we evoke Euler’s discretization 

method for determining the numerical solution for the LV model. Preceding other solution methods by 

two centuries, Euler’s method can be seen as a linear precursor of modern methods that include higher 

derivatives, such as the Runge-Kutta method. Its simplicity facilitates the comparisons between 

recursive models and ODEs.      

Formulating the typical Euler step for the LV model transforms the ODE into a series of discrete steps 

of the type   

𝑋𝑖,𝑡+ℎ = 𝑋𝑖,𝑡 + ℎ ∗
𝑑𝑋𝑖

𝑑𝑡
|

𝑋𝑖=𝑋𝑖,𝑡

=  𝑋𝑖,𝑡 + ℎ ∗ 𝑋𝑖,𝑡(𝑎𝑖 + ∑ 𝑏𝑖𝑗
𝑛
𝑗=1 𝑋𝑗,𝑡),     𝑖 = 1,2, … , 𝑛,  [ S5 ] 

Where h is the step size of Euler’s approximation and the derivative dXi/dt, which corresponds to the 

left-hand side of the differential equations in Eq. (1) of the Main Text, is evaluated at time t.  

Simple transformation of [ S5 ], close to the steady state, yields for 𝑖 = 1,2, … , 𝑛: 

𝑋𝑖,𝑡+ℎ − 𝑋𝑖,𝑡 ≈ 0 
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⇔ 𝑋𝑖,𝑡 + ℎ ∗ 𝑋𝑖,𝑡 (𝑎𝑖 + ∑ 𝑏𝑖𝑗

𝑛

𝑗=1

𝑋𝑗,𝑡) − 𝑋𝑖,𝑡 ≈ 0 

⇔ 𝑎𝑖 + ∑ 𝑏𝑖𝑗

𝑛

𝑗=1

𝑋𝑗,𝑡 ≈ 0 

⇔ 𝑎𝑖 + ∑ �̃�𝑖𝑗
𝑛
𝑗=1 𝑋𝑗,𝑡 − 𝑋𝑖,𝑡 ≈ 0  [ S6 ] 

Thus, if we disregard the Gaussian noise, wij, in the MAR model, the two sets of near-steady-state 

equations, [ S4 ] and [ S6 ], are equivalent if �̃�𝑖𝑗 equals bij  for all i ≠ j and bij + 1 for i = j. They are 

both linear, although the dynamic LV model itself is non-linear. Expressed differently, the MAR and 

LV models have the same steady state and their dynamics close to the steady state is typically similar. 

Expressed differently, as long as the nonlinearity of the LV system is close to linear or if its dynamics 

does not deviate much from the steady state, the LV and MAR models may be expected to yield similar 

results.  

1.5 MARSS 

MARSS is a software package for analyzing MAR models with or without log-transformation of the 

dependent variables (Holmes et al., 2012). Its use requires several steps. 

1 – Specify key MARSS settings: 

Parameters    Parameter format 

     

B –interaction parameters  B = "unconstrained"  Matrix with potentially different elements 

U –intrinsic growth parameters   U = "unequal"  Vector with potentially different elements 

Q - correlations of deviations  Q = "diagonal and 

unequal" 

 Matrix where the main diagonal elements 

are real values and other elements are zero 

Z –individual and interaction bias 

parameters of observations 

 Z = "identity"  Identity matrix 

A - bias in observations   A = "zero"  All elements zero 

 

R - correlation structure of 

observation errors 

 R = "zero"  All elements zero 

x0 - Initial values of the time series  x0 =   Initial values of the time series 

 

Z, A and R correspond to so-called “observation variables,” which simulate details of the observation 

process of the system variables. For our comparisons, we assume the observation of the target variables 

is perfect (Z = "identity") with no bias (A = "zero"), and no sources of noise affecting the observation 

process (R = "zero"). For more details, see MARSS manual (Holmes et al., 2020, 2012). 
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2 – In the MARSS function, the data must be formatted with variables in rows and observations in 

columns. If the data points are not equally distributed in time, they must be augmented by “NA” to 

force the interval between any two consecutive data entries to be of the same length. This is necessary 

to ensure the correct time structure of the data for the estimator. 

3 – With this regularization, MARSS finds estimates for U, B and Q, that correspond to α, β and 𝛿 in 

Eq. (4) of the Main Text. 

If MARSS does not converge, it is advisable to increase the maximum number of iterations. This step 

usually solves the problem but is different from the suggestion offered by Holmes and colleagues, 

namely, that the model assumptions should be checked (see p. 57 in (Holmes et al., 2020)). 

Our setup is exactly the same as that proposed by Holmes et al. (Holmes et al., 2020, 2012) for the Isle 

Royale dataset, which the authors used to exemplify the inference of species interaction parameters 

with and without covariates. Some of the illustration examples were modeled differently in the 

literature but for the purpose of comparisons with LV models, this model structure was used. For 

example, the dataset for ‘gray whales’ was modeled by Holmes and colleagues with  the species 

interaction matrix, set to zero, whereas R, the matrix that captures the noise from the observational 

process, was estimated from the data. Because we are interested in the interactions between species, 

we do not focus on observational noise, and Holmes’ original setup was replaced with the one discussed 

above. 

2 Case study 1: Synthetic LV data 

For a representative illustration of the parameter inference process, we use the four-variable LV system 

detailed in the Main Text. 

The smoothing and slope estimation steps followed directly the procedures described in Section 1.2 of 

these Supplements. The first derivative of the smoothing function was used to determine estimates of 

the slopes. 

To infer numerical values for the parameters of a given equation, we have the choice between linear 

regression (ALVI-LR) and matrix inversion (ALVI-MI). For ALVI-MI, we choose points from the 

sample and use the corresponding slope estimates to create a system of equations with the same number 

of equations and unknowns. As we have 4 variables and 20 parameters, we need 20 independent 

equations and thus observations at 5 time points. For each time point we obtain the value for each of 

the 4 dependent variables and use these to populate the equations.  

As an illustration for the noisy dataset, we choose 10, 8, 11 and 15DF-splines and time points t = 3, 8, 

10, 14 and 25 for the noisy dataset. For the replicate dataset, we use 8, 10, 10 and 9DF-splines, and the 

ALVI-MI solution was calculated with spline points at times 2, 3, 4, 6 and 7. The time point selection 

for the ALVI-MI solution can be automated using a random or exhaustive search among all 

possibilities.  

The noisy dataset (Figures 1a, S1a, and S4a) is representative of a study where each time point sample 

corresponds to a single observation taken when it is possible or convenient. By contrast, the replicate 

dataset (Figures 1b, S1b, and S4b) simulates a series of experimental replicates where the observations 
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were conducted multiple times, but at fewer time points, which the researchers suspect would contain 

valuable information or which were dictated by experimental constraints. 

As an illustration of how the smoothing techniques work, we use splines and LOESS with different 

degrees of smoothing. The results for variable X1 are shown in Figure S3. Choosing the optimal degree 

of smoothing is not a trivial matter. Too much smoothing ignores important details in the variable 

dynamics, while too little smoothing unduly highlights the noise. In the programing language R, the 

function “loess.as” allows the calculation of the optimum value for the span, which controls the 

smoothing. The user still must decide the degree of the polynomials to be used and choose from two 

criteria for automatic smoothing parameter selection: a bias-corrected Akaike information criterion 

(AICC) or generalized cross-validation (GCV). This choice is not always leading to the optimal 

solution, but it may be used to challenge earlier assumptions and settings. 

For comparison, we used the same LV system to produce datasets that only have observation noise. 

The results are presented in Figure S4, along with fits from the different methods. In this case MAR 

does not fare as well as LV. 

In the example shown in Figure 1 we used noise with standard deviation of 0.005. This level of noise 

does not perturb the simulation very far from the original dynamics. We returned to the same example 

but used a process noise standard deviation of 0.03 which will deviate the trajectory of the simulation 

considerably, as can be seem in Figure S10 a. 

This will diminish the ability of all tested methods to capture the noise free dynamic because we do 

not have good data to build upon. MAR should have an advantage here because it can estimate the 

noise distribution parameters as parameters of the model and, as can be seen in Table S1.7 and Figure 

S10, it outperformed ALVI in the noisy dataset. In the replicate ALVI still presented lower errors.  

We also note that, during our experiments with this dataset, the replication dataset produced 

consistently better results than the noisy dataset (Figure S10 and Table S1.7). This suggests a method 

to capture the true dynamic in a population affected by process noise that strongly distorts the 

simulation time series. This works by collecting parallel time series, with the same timepoints, for the 

same population and averaging the collected timepoints. If the noise is random, the law of large 

numbers guarantees that the mean will converge to the true value. This method will be easily applied 

to bacteria population in a wet lab, but it may be difficult to record parallel time series for natural 

populations.  

2.1 Application of ALVI to synthetic data 

An alternative to using the algebraic parameter inference method with matrix inversion (ALVI-MI) is 

linear regression (ALVI-LR); fits for the noisy dataset are shown in Figure S5. As in ALVI-MI, the 

parameter values are close to the true values and the fit is acceptable. The dynamics of the two are very 

similar. 

ALVI yields better results than MAR when the data only have observational noise (Figure S4 and Table 

S2.5). This result is due to MARSS have been created for ecological data which are always supposed 

to have process noise.  Also, the expectation maximization algorithm used in MARSS has difficulties 

to assign zero values to the Q matrix, where process noise is taken into account (Holmes et al., 2020).  
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Results obtained with MARSS or with ALVI-LR are rather robust if the data are noisy, whereas 

solutions with ALVI-MI may be sensitive to small alterations in the data. As an example, consider the 

synthetic MAR data presented in Figure 2 of the Main Text. Consider now an alternative sample 

obtained by applying the same level of noise but created with a different seed. The alternative dataset 

is almost indistinguishable from the original dataset in Figure 2, but it is possible that using the same 

sample of data points causes ALVI to “explode” (Figure S9). The reason is that Lotka–Volterra models 

in some instances can be structurally unstable, i.e., small modifications in the model settings might 

alter the predictions very substantially (Lindström, 2019). Of course, this outcome is easy to spot and 

suggests that if one calculates a new set of splines, it may be advisable to search for a new point sample 

as well. In fact, using a different point sample in the given case led to very good results (not shown). 

More generally, using different point samples often leads to similarly good ALVI-MI fits, but may 

produce quite different parameter values, which is a sign of almost-redundancy or sloppiness within 

the LV system (Gutenkunst et al., 2007; Srinath and Gunawan, 2010; Vilela et al., 2009). The 

conclusion is that, even if several inferred fits are similarly good, the associated parameter values for 

a noisy point sample may not be optimal for another noisy sample, which may not be surprising due to 

sloppiness. In fact, we showed in a different example with noise that the inferred parameter values 

yielded a better SSE than even the true values (Section 3.1 of the Main Text). This issue of parameter 

uncertainty may be considered a problem but can easily be turned into a positive feature: Different 

noisy datasets or subsamples of these datasets can be used to create natural ensembles of models that 

characterize the underlying data in a robust manner and may even yield additional insights into the 

variability of the model parameters.  

3 Comparative summary of the performance of LV and MAR in the presented examples 

We compared the sum of squared errors (SSE) in all experiments from different inference methods and 

summarize the results in Table 1 in the Main Text. Inspection of the results renders it evident that LV 

clearly performs better than MAR. In a few cases, the ALVI-LR solution gives a better SSE than ALVI-

MI, but the difference between the two are not substantial. ALVI-LR appears to be superior when the 

data are noise-free. 

We used a one-sided Wilcoxon rank test to see if the differences in performance are significant. The 

results and alternative hypotheses for these tests are presented in Table S7.  

The data support the earlier results showing that the LV inference per matrix inversion produces 

smaller SSEs than the other methods considered. Also, in the last two tests, the data do not show 

evidence that data smoothing reduces the SSEs in MAR.  

Comparing the results of ALVI-LR and ALVI-MI with respect to the absolute value of the difference 

between true and estimated parameters, we obtained mixed results (Table S8). Indeed, a one-sided 

Wilcoxon rank test with the alternative hypothesis that the absolute errors in parameter values 

associated with ALVI-LR were smaller than those associated with ALVI-MI did not yield a significant 

p-value 0.7695.  

Comparing the noisy and replicate datasets in Tables 1 and S8, the replicate datasets mostly present 

smaller SSE values. However, using the one-sided Wilcoxon rank test for the values in Table 1 with 

the alternative hypothesis—that the SSE values for the replicate dataset are smaller than those for the 

noisy datasets—did not yield a significant p-value (0.1331). If we only consider the values in Table 

S8, the test produced a p-value of 0.25, suggesting not to reject the null hypothesis that replicate 
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datasets are equal or worse than time series data (noisy datasets) for parameter estimation in LV using 

ALVI. 
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4 Supplemental Figures 

Figure S1 

 

Initial 
Conditions 

X1 1.2 

X2 0.3 

X3 2 

X4 0.001 
  

 

True 

Parameter 

Values 

a1 0.044 

b11 -0.08 

b12 0.02 

b13 0.08 

b14 0 

σ1 0.005 

a1 0.216 

b11 -0.04 

b12 -0.08 

b13 0.04 

b14 0 

σ2 0.005 

a2 0.116 

b21 -0.16 

b22 0.16 

b23 -0.08 

b24 0 

σ3 0.005 

a4 0.2 

b41 0 

b42 0 

b43 0 

b44 -0.1 

σ4 0.005 
 

 

Figure S1: Synthetic time courses with process noise. The left panel contains initial conditions and parameter values for 

the synthetic LV example in Eq. 1 of the Main Text with four dependent variables. Column a: Noisy dataset – 40 points 

from the synthetic data were multiplied by random gamma noise with mode 1 and standard deviation equal to 0.01. Column 

b: Replicate dataset – 15 time points were chosen from five time series of synthetic data. The five time series were created 

by multiplying the value of the variable by a random gamma value with mode 1 and standard deviation of 0.005.  

 

(a) (b) 
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Figure S2 

 Initial ALVI-MI  ALVI-LR  

 Conditions Estimates  Estimates  

X1 1.2 1.2 1.2 

X2 0.3 0.3 0.3 

X3 2 2 2 

X4 0.001 0.001 0.001 

 

True 

Parameter values   

a1 0.044 0.0440 0.0440 

b11 -0.08 -0.0800 -0.0800 

b12 0.02 0.0200 0.0200 

b13 0.08 0.0800 0.0800 

b14 0 0.0000 0.0000 

a1 0.216 0.2160 0.2160 

b11 -0.04 -0.0400 -0.0400 

b12 -0.08 -0.0800 -0.0800 

b13 0.04 0.0400 0.0400 

b14 0 0.0000 0.0000 

a2 0.116 0.1161 0.1161 

b21 -0.16 -0.1602 -0.1602 

b22 0.16 0.1601 0.1601 

b23 -0.08 -0.0799 -0.0799 

b24 0 0.0000 0.0000 

a4 0.2 0.2000 0.2000 

b41 0 -0.0003 -0.0003 

b42 0 0.0001 0.0001 

b43 0 0.0003 0.0003 

b44 -0.1 -0.0999 -0.0999 
 

 

Figure S2: Estimates with alternative ALVI methods, using noise-free data. Column a: ALVI-MI and Column b: 

ALVI-LR with original synthetic LV data. The fits are of high quality (ALVI-MI SSE = 1.162229e-05 and ALVI-LR SSE 

= 3.289283e-07) and the parameter estimates are very close to the true parameters.  

  

(a) (b) 
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Figure S3 

 

Figure S3: Smoothing of variable X1 of Figure S1, subject to process noise. Column a: Splines with different degrees 

of freedom. Column b: LOESS with different span levels.  

  

(a) (b) 
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Figure S4 

 Initial Cond. 
Noisy 

Est. 
Replicate 

Est. 

X1 1.2 1.26251 1.23614 
X2 0.3 0.36268 0.30334 
X3 2 1.77750 1.96120 
X4 0.001 0.00100 0.00100     

 Pars 
Noisy 

Est. 
Replicate 

Est. 

a1 0.044 0.05719 0.04507 
b11 -0.08 -0.07001 -0.05512 
b12 0.02 -0.00061 0.00941 
b13 0.08 0.08336 0.05465 
b14 0 0.00338 -0.00213 
a2 0.216 0.25575 0.21364 
b21 -0.04 -0.10498 -0.02271 
b22 -0.08 -0.07085 -0.09048 
b23 0.04 0.09800 0.03119 
b24 0 0.01219 -0.00333 
a3 0.116 0.15452 0.15130 
b31 -0.16 -0.16217 -0.18840 
b32 0.16 0.16524 0.18628 
b33 -0.08 -0.12598 -0.10894 
b34 0 0.00315 0.00724 
a4 0.2 0.19984 0.19680 
b41 0 -0.00295 0.00823 
b42 0 -0.00444 -0.00506 
b43 0 0.00775 -0.00532 
b44 -0.1 -0.09704 -0.09971 

    
Degrees of 
Freedom 10,8,11,15 8,10,10,9     
Point 
Samples 3,8,10,14,25 2,3,4,6,7 

 

 

 

Figure S4: ALVI-MI and MARSS methods applied to noisy (a) and replicate (b) LV datasets with observational 

noise. Original synthetic data are shown as gray dots and data with added noise as black circles. ALVI results are presented 

in blue. True parameters and ALVI-MI estimates are presented in the Table. MAR estimates are presented in green, orange 

and yellow.  Data and parameter estimates for MAR can be seen in Tables S2.1 to S2.4. SSEs for all fits are presented in 

Table S2.5. 

  

(a) (b) 
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Figure S5 

 Initial Cond. Noisy Est. Rep. Est. 

X1 1.2 1.26251 1.23331 

X2 0.3 0.36268 0.30350 

X3 2 1.77750 1.96125 

X4 0.001 0.00100 0.00100 
    

 Parameter Noisy Est. 
Replicate 

Est. 

a1 0.044 0.04307 0.04542 

b11 -0.08 -0.04771 -0.04521 

b12 0.02 0.01522 0.01475 

b13 0.08 0.03203 0.02897 

b14 0 -0.00300 -0.00452 

a2 0.216 0.23238 0.22659 

b21 -0.04 -0.06889 -0.04244 

b22 -0.08 -0.03794 -0.07417 

b23 0.04 0.00361 0.02407 

b24 0 0.00257 0.00062 

a3 0.116 0.17954 0.13408 

b31 -0.16 -0.19961 -0.19069 

b32 0.16 0.14998 0.17615 

b33 -0.08 -0.06055 -0.07134 

b34 0 0.01357 0.00579 

a4 0.2 0.18269 0.19742 

b41 0 0.01136 -0.00026 

b42 0 -0.00424 -0.00079 

b43 0 -0.00120 0.00135 

b44 -0.1 -0.09952 -0.09879 
    

Degrees of Freedom 10,8,11,15 8,10,10,9 
 

 

Figure S5: Results of ALVI-LR and MAR applied to the noisy and replicate datasets. Column a: Noisy dataset. Time 

courses of X1, X2, X3 and X4 were smoothed with 6, 11, 11 and 11DF-splines respectively. Column b: Replicate dataset. All 

variables were smoothed with 8DF-splines. The datasets are the same used in Figure 1 of the main text and in Tables S1.2 

and S1.3 in the Supplements. MAR estimates are the same presented in Figure 1 and Tables S1.4 and S1.5. Noise level 

added is 20%. 

(a) (b) 
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Figure S6 

 

 

Figure S6 – Examples of different levels of process noise. Four datasets were generated by multiplying the discretized 

equations with a random normal noise with mean 1 and different standard deviations. 
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Figure S7 

 

Figure S7 – Examples of experimental data analyzed with ALVI-LR and MAR. Black lines are estimates from 

Mühlbauer et al. (Mühlbauer et al., 2020). ALVI-LR estimates are represented as blue lines; corresponding parameter 

values can be seen in Table S4.2. MAR estimates are presented in green, orange and yellow. Parameter estimates are 

presented in Table S4.3. a: Standardized volume of Paramecium caudatum culture grown in monoculture (Gause, 1934). 

b: Standardized volume of Paramecium caudatum and Paramecium aurelia cultures grown together (Gause, 1934). c: 

Predator-prey interactions between Didinium nasutum and Paramecium caudatum grown in mixture (Gause, 1934). d: 

Multi-trophic dynamics for wolves, moose, and fir tree rings on Isle Royale from 1960 to 1994 (McLaren and Peterson, 

1994). e: Predator-prey interactions between Eotetranychus sexmaculatus and Typhlodromus occidentalis in a spatially 

structured experiment (Huffaker et al., 1963). 
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Figure S8 

 

Figure S8 - Multi-trophic dynamics for wolves, moose, and fir trees on Isle Royale from 1960 to 1994, from McLaren 

& Peterson  (McLaren and Peterson, 1994). This panel is similar to Figure 2 d) but contains additional information. 

ALVI-MI estimates using all data are represented as blue lines. Red lines correspond to the estimates using ALVI-MI for 

two intervals, from 1959 to 1980 and form 1983 until the end of the series. This split was tested because around 1980 the 

wolves were exposed to a disease that drastically reduced their numbers, an event that dynamic models do not capture 

outside piecewise operation. MAR estimates are presented in green, orange and yellow. These estimates are the same as in 

Figure 4. 
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Figure S9 

 

Figure S9: ALVI-MI and MAR applied to an alternative sample of the same data presented in Figure 2, but with 

slightly changed noise. Although the differences in noise are visually almost undetectable, very different results for the 

ALVI-MI fit are obtained if the same sample of spline points is used. However, if a new sample of spline points is 

determined, the fits are almost indistinguishable from the true trajectories (not shown). See Text for further explanations. 

  

(a) (b) 
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Figure S10: Time course used to originate the noisy dataset (a), ALVI-MI and MARSS methods applied to noisy (b) 

and replicate (c) LV datasets with process noise with increased standard variation. This Figure shows the same 

situation as Figure 1 in the main text with an increased standard variation for the process noise of 0.03. Original synthetic 

data are shown as gray dots and data with added noise as black circles. LV results are presented in blue. True parameters 

and LV estimates are presented in the Table. MAR estimates are presented in green, orange and yellow.  

  

(a) (b) (c) 
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Figure S11: Smoothing example. Noise-free example demonstrating how smoothing can yield very misleading results. 
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Figure S12: Artificial LV system with different initial conditions using random sampling. The different columns 

display the dynamics of the same system as used in Figure 1, but started with different values, which were chosen ratios of 

the system steady state. For each starting condition, forty random points were sampled and used to inform the estimation 

methods. 
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Figure S13: Artificial LV system with different initial conditions using replicate sampling. The different columns 

display the dynamics of the same system as used in Figure 1 but started with different values that were chosen as ratios of 

the system steady state. For each starting condition, the system was run five times and sampled at predetermined timepoints. 
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Figure S14: Artificial MAR system with different initial conditions, using random sampling. The different columns 

present the dynamics of the same system used in Figure 2 when started with different values that were chosen as ratios of 

the original system’s steady state. For each starting condition, forty random points were sampled and used to inform the 

estimation methods. 
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Figure S15: Artificial MAR system with different initial conditions, using replicate sampling. The different columns 

present the dynamics of the same system used in Figure 2 when started with different values that were chosen as ratios of 

the original system’s steady state. For each starting condition, the system was run five times and sampled at predetermined 

timepoints. 
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5 Supplemental Tables 

Table S1.1 – Synthetic LV data without noise. The data were generated with an LV system with four dependent 

variables with parameter values presented in Figure S1. 

t 
 

X1 X2 X3 X4 

1  1.20000 0.30000 2.00000 0.00100 
2  1.32083 0.37078 1.67253 0.00122 
3  1.41112 0.44848 1.42395 0.00149 
4  1.47488 0.53265 1.23448 0.00182 
5  1.51746 0.62275 1.09051 0.00222 
6  1.54431 0.71810 0.98219 0.00272 
7  1.56033 0.81785 0.90227 0.00332 
8  1.56959 0.92096 0.84535 0.00405 
9  1.57534 1.02621 0.80746 0.00494 

10  1.58006 1.13229 0.78565 0.00603 
11  1.58566 1.23781 0.77778 0.00737 
12  1.59356 1.34144 0.78227 0.00899 
13  1.60486 1.44195 0.79788 0.01097 
14  1.62038 1.53828 0.82360 0.01338 
15  1.64076 1.62958 0.85846 0.01632 
16  1.66648 1.71521 0.90140 0.01990 
17  1.69783 1.79474 0.95118 0.02425 
18  1.73496 1.86789 1.00625 0.02954 
19  1.77779 1.93449 1.06475 0.03596 
20  1.82599 1.99445 1.12450 0.04375 
21  1.87894 2.04769 1.18311 0.05317 
22  1.93567 2.09416 1.23810 0.06457 
23  1.99490 2.13382 1.28715 0.07830 
24  2.05502 2.16666 1.32828 0.09482 
25  2.11427 2.19279 1.36011 0.11461 
26  2.17079 2.21241 1.38190 0.13823 
27  2.22286 2.22591 1.39369 0.16628 
28  2.26899 2.23381 1.39615 0.19943 
29  2.30811 2.23680 1.39047 0.23832 
30  2.33961 2.23566 1.37821 0.28360 
31  2.36336 2.23123 1.36102 0.33585 
32  2.37966 2.22437 1.34057 0.39550 
33  2.38913 2.21586 1.31834 0.46281 
34  2.39266 2.20642 1.29562 0.53773 
35  2.39123 2.19665 1.27343 0.61988 
36  2.38587 2.18704 1.25253 0.70850 
37  2.37758 2.17796 1.23345 0.80243 
38  2.36727 2.16968 1.21655 0.90013 
39  2.35575 2.16237 1.20201 0.99980 
40  2.34368 2.15612 1.18987 1.09947 
41  2.33162 2.15098 1.18009 1.19718 
42  2.32001 2.14691 1.17257 1.29113 
43  2.30917 2.14387 1.16713 1.37978 
44  2.29935 2.14177 1.16358 1.46196 
45  2.29070 2.14052 1.16170 1.53691 
46  2.28329 2.14001 1.16126 1.60424 
47  2.27717 2.14013 1.16203 1.66392 
48  2.27231 2.14076 1.16377 1.71620 
49  2.26866 2.14180 1.16626 1.76151 
50  2.26613 2.14313 1.16930 1.80043 
51  2.26462 2.14467 1.17270 1.83359 
52  2.26400 2.14632 1.17627 1.86167 
53  2.26415 2.14801 1.17987 1.88531 
54  2.26494 2.14968 1.18337 1.90511 
55  2.26623 2.15128 1.18668 1.92164 
56  2.26790 2.15275 1.18970 1.93538 
57  2.26982 2.15407 1.19237 1.94679 
58  2.27189 2.15523 1.19467 1.95622 
59  2.27400 2.15620 1.19658 1.96401 
60  2.27609 2.15698 1.19809 1.97044 
61  2.27808 2.15759 1.19921 1.97573 
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62  2.27991 2.15802 1.19998 1.98009 
63  2.28156 2.15829 1.20042 1.98367 
64  2.28299 2.15842 1.20058 1.98661 
65  2.28418 2.15843 1.20049 1.98902 
66  2.28515 2.15833 1.20021 1.99100 
67  2.28588 2.15816 1.19977 1.99263 
68  2.28640 2.15792 1.19922 1.99396 
69  2.28673 2.15764 1.19859 1.99505 
70  2.28688 2.15733 1.19793 1.99595 
71  2.28688 2.15702 1.19726 1.99668 
72  2.28675 2.15671 1.19660 1.99728 
73  2.28653 2.15641 1.19598 1.99777 
74  2.28623 2.15613 1.19541 1.99818 
75  2.28588 2.15588 1.19491 1.99851 
76  2.28551 2.15566 1.19448 1.99878 
77  2.28512 2.15547 1.19411 1.99900 
78  2.28473 2.15532 1.19383 1.99918 
79  2.28436 2.15521 1.19361 1.99933 
80  2.28402 2.15512 1.19346 1.99945 
81  2.28371 2.15507 1.19337 1.99955 
82  2.28344 2.15504 1.19333 1.99963 
83  2.28322 2.15503 1.19334 1.99970 
84  2.28303 2.15505 1.19338 1.99975 
85  2.28289 2.15508 1.19346 1.99980 
86  2.28279 2.15512 1.19355 1.99983 
87  2.28272 2.15517 1.19367 1.99986 
88  2.28269 2.15522 1.19378 1.99989 
89  2.28269 2.15528 1.19391 1.99991 
90  2.28270 2.15533 1.19403 1.99993 
91  2.28274 2.15539 1.19414 1.99994 
92  2.28279 2.15544 1.19425 1.99995 
93  2.28286 2.15549 1.19434 1.99996 
94  2.28292 2.15553 1.19442 1.99997 
95  2.28299 2.15556 1.19449 1.99997 
96  2.28306 2.15559 1.19455 1.99998 
97  2.28313 2.15562 1.19459 1.99998 
98  2.28320 2.15563 1.19462 1.99998 
99  2.28325 2.15564 1.19464 1.99999 

100  2.28330 2.15565 1.19465 1.99999 
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Table S1.2 – Noisy LV dataset with process noise. From the synthetic data in Table S1.1, forty values were selected with 

random gamma process noise with mode 1 and a standard deviation of 0.005. 

t  X1 X2 X3 X4 

1  1.20000 0.30000 2.00000 0.00100 
5  1.51251 0.63358 1.08755 0.00219 

11  1.64585 1.26200 0.76865 0.00697 
14  1.64274 1.48105 0.78782 0.01288 
15  1.66017 1.58414 0.81572 0.01529 
16  1.69344 1.65454 0.85605 0.01860 
18  1.69305 1.79765 0.92227 0.02729 
22  1.81304 2.00073 1.22418 0.05985 
23  1.86555 2.10382 1.27719 0.07099 
28  2.23935 2.31639 1.42863 0.17424 
30  2.27743 2.28900 1.40613 0.25200 
40  2.40705 2.15132 1.10974 1.02776 
44  2.25217 2.00371 1.04817 1.39308 
45  2.21085 2.04131 1.07756 1.47266 
47  2.27101 2.00634 1.09095 1.60541 
48  2.24058 2.02473 1.08946 1.63323 
50  2.19024 1.99448 1.10842 1.71833 
52  2.13971 2.03247 1.11602 1.79507 
53  2.17131 2.05273 1.13077 1.79976 
55  2.09303 2.16683 1.16259 1.82728 
56  2.14169 2.18090 1.23039 1.86148 
57  2.15893 2.18827 1.24899 1.85011 
58  2.18892 2.22929 1.27950 1.84045 
61  2.35211 2.19343 1.32238 1.92892 
65  2.35007 2.12164 1.27142 1.91159 
66  2.34804 2.13106 1.22650 1.93078 
69  2.39336 2.19446 1.15401 1.97738 
70  2.29343 2.23809 1.15456 2.02717 
71  2.26824 2.20654 1.15435 2.05222 
75  2.31161 2.29433 1.24687 2.05090 
76  2.30186 2.31163 1.25240 2.02968 
77  2.33082 2.34493 1.24258 2.00202 
78  2.34656 2.37479 1.26936 2.07087 
81  2.40470 2.27890 1.27538 2.08506 
86  2.37498 2.29640 1.29586 2.03397 
92  2.34848 2.16038 1.26388 1.99799 
93  2.42223 2.19219 1.22262 2.00513 
94  2.32452 2.17029 1.20688 1.97529 
98  2.27953 2.14108 1.21721 1.97030 
99  2.28168 2.12702 1.20204 1.95857 
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Table S1.3 – Replicate LV dataset with process noise. 5 time series were created with random gamma process noise with 

mode 1 and a standard deviation of 0.005. 15 time points were selected, and their value recorded in the five time series. 

t 
 

X1 X2 X3 X4 
1  1.20000 0.30000 2.00000 0.00100 
1  1.20000 0.30000 2.00000 0.00100 
1  1.20000 0.30000 2.00000 0.00100 
1  1.20000 0.30000 2.00000 0.00100 
1  1.20000 0.30000 2.00000 0.00100 
6  1.50355 0.73064 0.93663 0.00264 
6  1.55652 0.69938 0.96581 0.00282 
6  1.51725 0.70634 0.95386 0.00269 
6  1.53948 0.68626 0.94023 0.00267 
6  1.64533 0.75280 1.00315 0.00268 

11  1.55626 1.27193 0.78270 0.00695 
11  1.52379 1.23059 0.77654 0.00745 
11  1.53200 1.27776 0.74456 0.00742 
11  1.51811 1.23210 0.78150 0.00773 
11  1.64292 1.32126 0.78364 0.00726 
18  1.67779 1.88860 1.02242 0.02728 
18  1.71496 1.78942 0.97178 0.02929 
18  1.71456 1.87836 1.03706 0.03082 
18  1.74772 1.98872 1.17179 0.03071 
18  1.73540 1.87148 1.07386 0.02678 
26  2.26850 2.30238 1.51184 0.11832 
26  2.08035 2.18324 1.40897 0.13217 
26  2.24296 2.29280 1.41801 0.14215 
26  2.32083 2.07833 1.32432 0.14052 
26  2.22276 2.26929 1.43788 0.12060 
35  2.42302 2.12743 1.11818 0.54949 
35  2.45501 2.21424 1.23765 0.58778 
35  2.45008 2.19947 1.29769 0.69399 
35  2.43268 2.22595 1.24329 0.63315 
35  2.43612 2.34112 1.41302 0.56372 
41  2.23522 2.08018 1.00845 1.14479 
41  2.35149 2.13545 1.10521 1.12536 
41  2.27412 2.07173 1.16723 1.29210 
41  2.38820 2.25877 1.17280 1.25602 
41  2.43691 2.24197 1.21108 1.07008 
51  2.31858 2.07923 1.18185 1.73076 
51  2.22218 2.16262 1.23688 1.79832 
51  2.32990 2.12956 1.11987 1.87016 
51  2.24401 2.13366 1.22031 1.93983 
51  2.26324 2.15439 1.20753 1.79423 
60  2.30610 2.15613 1.24601 1.91992 
60  2.27671 2.21367 1.24491 1.94921 
60  2.19113 2.16943 1.09572 1.91549 
60  2.22458 2.13073 1.26967 1.98787 
60  2.23255 2.05976 1.09038 1.88321 
70  2.29975 2.23259 1.24172 1.95636 
70  2.24019 2.13489 1.26164 1.99328 
70  2.28249 2.11836 1.22900 2.00258 
70  2.30426 2.15297 1.26425 1.99650 
70  2.30109 2.07601 1.10981 2.07773 
80  2.26967 2.14344 1.22106 1.96005 
80  2.36832 2.09322 1.18451 1.86882 
80  2.33270 2.14371 1.17647 2.03363 
80  2.32060 2.24480 1.24103 1.93923 
80  2.25806 2.08439 1.16234 1.97468 

  



 
31 

Table S1.4 – MAR estimates for the noisy LV dataset with process noise in Figures 1 and S5. 

 

 

MAR without 
transformation 

MAR with log 
transformation 

MAR with 
smoothing 

MAR with log 
transformation 
and smoothing 

β11 0.84413 0.85630 0.89175 0.91190 
β21 -0.12340 -0.09640 -0.22248 -0.14258 
β31 -0.18615 -0.38482 -0.25399 -0.58568 
β41 0.17772 0.27174 0.31566 0.45412 
β12 0.06341 0.02756 0.04618 0.02636 
β22 1.00207 0.91931 1.05986 0.96171 
β32 0.18648 0.17359 0.18256 0.18601 
β42 -0.04301 0.11562 -0.10247 0.09211 
β13 0.11908 0.08753 0.02948 0.02781 
β23 -0.02551 0.01969 -0.06283 -0.02235 
β33 0.85809 0.96271 0.89175 1.00641 
β43 -0.03045 0.04882 -0.03164 0.03135 
β14 -0.00301 -0.00101 -0.00149 -0.00176 
β24 0.00399 -0.00012 0.01615 0.00095 
β34 0.00745 0.00885 0.02280 0.01865 
β44 0.96062 0.93182 0.94077 0.92168 
α1 0.08044 0.08173 0.01027 0.00592 
α2 0.30362 0.13916 0.01778 0.01786 
α3 0.18074 0.18825 -0.00589 -0.00399 
α4 -0.19114 -0.26988 0.01995 0.07664 
δ1 0.00133 0.00023 0.00003 0.00000 
δ2 0.00092 0.00024 0.00005 0.00003 
δ3 0.00024 0.00015 0.00003 0.00006 
δ4 0.00104 0.00104 0.00028 0.00036 
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Table S1.5 – MAR estimates for the replicate LV dataset with process noise in Figures 1 and S5. 

 

 

MAR without 
transformation 

MAR with log 
transformation 

MAR with 
smoothing 

MAR with log 
transformation 
and smoothing 

β11 0.85748 0.83902 0.92226 0.94965 
β21 -0.08820 -0.02322 -0.14563 -0.09104 
β31 -0.16769 -0.32656 -0.22421 -0.46501 
β41 0.21186 0.41978 0.31538 0.69449 
β12 0.05934 0.03292 0.03421 0.01789 
β22 0.99331 0.91148 1.02606 0.93669 
β32 0.18256 0.17803 0.20977 0.20265 
β42 -0.06143 0.08393 -0.11902 0.00759 
β13 0.12485 0.10438 0.00884 0.01254 
β23 -0.04732 -0.01476 -0.06818 -0.02801 
β33 0.86314 0.98782 0.83056 0.96753 
β43 -0.05509 0.01799 -0.02853 0.00199 
β14 -0.00478 -0.00052 -0.00747 -0.00326 
β24 -0.00760 -0.00367 0.00036 -0.00142 
β34 -0.00040 0.00356 0.01062 0.01049 
β44 0.96290 0.92774 0.95265 0.91845 
α1 0.05648 0.08922 0.01296 0.00749 
α2 0.28550 0.09089 0.02280 0.02393 
α3 0.15580 0.13414 -0.01004 -0.00642 
α4 -0.20024 -0.35593 0.02490 0.09494 
δ1 0.00013 0.00000 0.00001 0.00000 
δ2 0.00012 0.00004 0.00001 0.00000 
δ3 0.00021 0.00002 0.00008 0.00012 
δ4 0.00215 0.00084 0.00017 0.00002 
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Table S1.6 – Sum of squared errors (SSE) of data fits for noisy and replicate LV datasets with process noise with 

ALVI-LR (linear regression), ALVI-MI (matrix inversion) and four variants of the MAR methods. 

 

 Noisy LV dataset   Replicate LV dataset  

 X1 X2 X3 X4 Total  X1 X2 X3 X4 Total 

ALVI-LR 0.232 0.321 0.401 0.122 1.076  0.138 0.042 0.147 0.022 0.349 

ALVI-MI 0.330 0.331 0.349 0.151 1.160  0.031 0.060 0.107 0.029 0.226 

MAR 0.109 0.101 0.163 3.301 3.674  0.080 0.050 0.096 1.287 1.513 

MAR log transform 0.074 0.080 0.109 5.071 5.335  0.053 0.080 0.046 1.215 1.395 

MAR with smoothing 0.346 0.341 0.316 1.636 2.638  0.302 0.043 0.202 0.846 1.394 

MAR log transform with smoothing 0.347 0.498 0.595 3.577 5.017  0.289 0.093 0.445 0.655 1.481 
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Table S1.7 – Sum of squared errors (SSE) of data fits for noisy and replicate LV datasets with process noise with 

increased standard deviation (0.03) for ALVI-LR (linear regression), ALVI-MI (matrix inversion) and four variants 

of the MAR methods. 

 

 Noisy LV dataset                            Replicate LV dataset     

 X1 X2 X3 X4 Total  X1 X2 X3 X4 Total 

ALVI-LR 1.302 4.460 11.758 5.426 22.946  0.528 2.284 2.707 0.648 6.167 
MAR 1.060 4.243 4.807 11.031 21.141  0.653 2.261 2.375 4.304 9.593 
MAR log transform 1.060 4.357 6.257 27.499 39.173  0.761 1.201 1.614 11.182 14.759 
MAR with smoothing 1.539 6.086 14.868 6.461 28.955  0.880 1.810 2.904 2.246 7.839 
MAR log transform with smoothing 1.564 5.271 16.069 11.327 34.231  0.840 1.664 4.265 3.858 10.627 
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Table S2.1 - Noisy LV dataset with observational noise. From the synthetic data in Table S1.1, forty values were selected 

and random normal noise was added with mean 0 and a standard deviation equal to 20% of each variable mean. 

t  X1 X2 X3 X4 

1  1.14111 0.94716 1.92175 0.06256 
3  1.36364 0.45349 1.45431 0.06645 
5  1.22283 0.19582 1.33123 0.03641 
8  1.47489 1.02716 0.78493 0.01857 

13  1.68296 1.83783 0.72635 0.20645 
17  1.87602 0.98039 1.33307 0.02590 
19  2.23270 2.28656 0.88182 0.08578 
24  2.46929 2.14703 1.42853 0.30301 
26  2.12740 1.68427 1.24384 0.29370 
30  2.93876 1.47752 1.47634 0.33315 
31  1.60470 2.50979 0.99567 0.31345 
32  2.64561 2.16238 1.21792 0.46671 
33  2.16612 2.30080 1.25219 0.44936 
40  2.90825 2.47699 1.42807 0.59721 
42  2.16482 2.82494 1.06154 1.37928 
44  2.86258 2.10103 1.23401 1.37031 
46  2.30199 1.92131 1.06248 1.91622 
49  1.46650 2.70250 0.96520 2.29495 
52  2.07311 1.79577 1.33918 1.55672 
53  1.52180 1.69359 1.07106 2.03041 
55  2.34261 1.94310 1.50543 1.95215 
56  3.07809 3.11285 1.29445 1.80656 
62  1.30983 1.83120 1.16429 2.13265 
63  2.70020 2.32062 1.30813 2.15788 
64  1.68571 1.69570 1.19108 1.96368 
67  3.06508 1.69727 1.30761 1.92002 
69  2.87653 2.02694 1.10203 1.72796 
71  1.92870 2.69214 0.69211 1.84299 
73  2.17466 1.97223 1.23306 1.94046 
75  2.25649 2.48677 1.35097 1.93681 
77  2.12334 1.58311 0.96197 2.23364 
78  3.38719 1.99818 0.93052 1.93376 
79  2.33980 1.85041 1.09020 2.46553 
83  1.97877 2.01006 1.07131 1.89393 
84  2.55545 2.64187 1.29245 2.38731 
87  2.36884 2.11299 1.22538 2.03970 
90  2.25285 2.22309 1.43866 1.73292 
91  2.24325 2.25534 1.58509 2.14186 
93  2.47453 1.91424 1.19010 2.00689 
95  1.82853 1.59450 1.18877 1.91223 
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Table S2.2 - Replicate LV dataset with observational noise. 11 points were selected from the synthetic data in Table 

S1.1. For each time point, five observations were created by multiplying the original value by a normal random variable 

with mean 1 and standard deviation 0.2. 

t  X1 X2 X3 X4 

1  1.079474 0.307892 1.968433 0.001177 
1  1.228073 0.319118 1.767284 0.001143 
1  1.001938 0.278408 2.035955 0.001019 
1  1.151608 0.34439 2.049352 0.000994 
1  1.106675 0.330651 1.634474 0.001462 
6  1.409001 0.827832 1.033651 0.003136 
6  1.292779 0.655128 0.840712 0.002841 
6  1.186731 0.753583 0.964293 0.003671 
6  1.501709 0.702128 0.846646 0.002595 
6  1.600803 0.778034 1.191477 0.003243 

11  1.553429 1.585188 0.501395 0.008283 
11  1.420026 1.565142 0.721249 0.009309 
11  1.599542 0.772725 0.708241 0.004804 
11  1.642382 1.707548 0.424371 0.00881 
11  1.142047 1.689577 0.992655 0.00613 
18  1.644046 1.84217 0.929999 0.044789 
18  1.780007 1.601518 1.134646 0.030728 
18  1.710696 1.833336 1.096591 0.023249 
18  1.331607 2.483739 0.591253 0.029612 
18  1.357593 1.968956 1.2092 0.017282 
26  2.560157 2.19029 1.010075 0.084837 
26  2.478865 2.142542 1.441704 0.160821 
26  2.920662 2.166496 1.227926 0.177711 
26  1.783109 1.700208 1.23534 0.205836 
26  1.809358 2.395388 1.056138 0.105769 
33  2.230052 2.81995 1.194645 0.540826 
33  1.692464 2.038453 1.113628 0.428625 
33  2.981684 2.168246 1.363852 0.486374 
33  2.095491 1.58247 1.231077 0.474691 
33  2.875616 2.102594 1.238574 0.612312 
41  1.970818 2.333379 1.04227 1.296557 
41  1.611026 1.927812 1.114056 1.438404 
41  2.112647 2.279129 1.081485 0.99357 
41  2.652937 1.953001 1.498288 1.30327 
41  2.261238 2.34695 1.170614 1.306394 
51  2.079631 1.228253 1.209477 2.075646 
51  1.819921 1.666988 1.070121 1.644326 
51  2.454389 2.202211 1.41537 2.439964 
51  2.256488 2.134285 1.231388 1.709964 
51  2.213276 2.102253 1.234634 1.884561 
60  2.165804 2.18245 1.155609 2.283614 
60  2.279157 1.885294 1.137585 1.698353 
60  2.36829 2.52211 1.349542 2.049815 
60  2.234632 2.281866 1.184983 1.165772 
60  2.439225 1.996245 1.501995 2.82506 
70  1.719859 2.411846 1.227642 1.786889 
70  2.570555 2.462909 1.1756 1.878108 
70  1.790253 1.887747 1.142104 1.895824 
70  2.723166 2.042576 1.65201 1.8243 
70  3.007495 2.227207 0.93787 2.226255 
80  2.296889 2.001374 1.396972 2.20474 
80  2.749139 1.714839 1.059392 1.594539 
80  0.9041 2.298373 1.489557 2.267917 
80  1.676455 1.788501 0.766479 2.491924 
80  2.131265 1.738182 1.403356 1.898047 
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Table S2.3 - MAR estimates for the noisy dataset with observational noise in Figure S4. 

 

 

MAR without 
transformation 

MAR with log 
transformation 

MAR with 
smoothing 

MAR with log 
transformation 
and smoothing 

β11 -0.09089 -0.03360 1.06000 1.02000 
β21 0.27209 0.43560 0.13800 0.07940 
β31 -0.21012 -0.43570 0.07490 -0.10500 
β41 0.12619 0.42840 -0.33900 -0.22100 
β12 0.43295 0.24860 -0.05360 -0.01990 
β22 0.47619 0.62610 0.91000 0.94700 
β32 0.18150 0.17100 0.01730 0.12000 
β42 0.00788 0.23190 0.22900 0.19400 
β13 -0.20530 -0.01010 -0.01980 -0.01510 
β23 -0.28009 -0.33410 -0.07090 -0.07300 
β33 0.50995 0.57920 0.86700 0.90900 
β43 -0.00869 -0.02950 -0.03190 0.04240 
β14 0.07772 0.00960 -0.00954 -0.00439 
β24 0.06929 0.02720 -0.02780 -0.01270 
β34 0.00957 0.01530 -0.00911 -0.00807 
β44 0.93364 0.88740 0.98800 0.95600 
α1 1.70925 0.63980 0.01030 0.00614 
α2 0.67025 -0.04340 0.01430 0.01390 
α3 0.67931 0.29480 -0.00571 -0.00386 
α4 -0.17950 -0.45920 0.02010 0.04190 
δ1 0.22184 0.05270 0.00005 0.00001 
δ2 0.19571 0.07520 0.00014 0.00003 
δ3 0.01924 0.01480 0.00049 0.00028 
δ4 0.04708 0.07570 0.00005 0.00010 
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Table S2.4 - MAR estimates for the replicate dataset with observational noise in Figure S4. 

 

 

MAR without 
transformation 

MAR with log 
transformation 

MAR with 
smoothing 

MAR with log 
transformation 
and smoothing 

β11 0.77800 0.76500 1.01000 1.07000 
β21 0.07760 0.21000 0.00367 0.07720 
β31 -0.08920 -0.31200 -0.01630 -0.10700 
β41 0.09140 0.13400 0.23200 0.38400 
β12 0.13500 0.11600 -0.00781 -0.00292 
β22 0.87500 0.80500 0.93600 0.88300 
β32 0.14900 0.22500 0.10400 0.14800 
β42 -0.00518 0.17400 -0.08900 0.06510 
β13 0.24800 0.22200 -0.00982 -0.00328 
β23 -0.20400 -0.18300 -0.10300 -0.05940 
β33 0.94400 1.13000 0.86500 0.98300 
β43 0.01090 0.17500 -0.02880 0.04240 
β14 -0.02600 -0.01100 -0.02170 -0.00991 
β24 -0.00159 -0.00250 -0.00530 -0.00583 
β34 -0.00022 -0.00299 0.00004 -0.00317 
β44 0.97200 0.93000 0.96400 0.93000 
α1 0.02400 0.01470 0.00925 0.00610 
α2 0.02610 0.03690 0.01980 0.02190 
α3 -0.02240 -0.01470 -0.00880 -0.00573 
α4 0.02160 0.10700 0.02500 0.09300 
δ1 0.00557 0.00089 0.00008 0.00001 
δ2 0.00243 0.00073 0.00037 0.00009 
δ3 0.00001 0.00004 0.00024 0.00043 
δ4 0.00559 0.00267 0.00029 0.00022 
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Table S2.5 – Sum of squared errors (SSE) of data fits for noise and replicate LV datasets with observational noise 

with ALVI-LR (linear regression), ALVI-MI (matrix inversion) and four variants of the MAR methods for the 

data presented in Figure S4. 
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Table S3.1 – Initial conditions, parameter values and estimates for a four-variable LV system that converges to a 

stable steady state, as presented in Figure 3a. 

 Initial Condition Estimate     
X1 1.2 1.20993     
X2 0.3 0.31991     
X3 2 1.82146     
X4 0.001 0.00104     
       

 

True 
Parameter 

Value ALVI-MI   MAR 
MAR with log 

transformation 

a1 0.044 0.04398  β11 0.89300 0.88800 
b11 -0.08 -0.07995  β21 -0.07190 0.08510 
b12 0.02 0.01997  β31 -0.17500 -0.43000 
b13 0.08 0.07999  β41 0.19200 0.42800 
b14 0 -0.00001  β12 0.04840 0.03110 
a2 0.216 0.21599  β22 0.99000 0.91100 
b21 -0.04 -0.04000  β32 0.16800 0.18000 

b22 -0.08 -0.08001  β42 -0.05440 0.11000 
b23 0.04 0.04002  β13 0.06600 0.06700 
b24 0 0.00000  β23 -0.07540 -0.06800 
a3 0.116 0.11600  β33 0.91100 1.03000 
b31 -0.16 -0.15993  β43 -0.00639 0.03510 
b32 0.16 0.15998  β14 -0.00719 -0.00229 
b33 -0.08 -0.08007  β24 -0.00739 -0.00763 
b34 0 -0.00001  β34 0.00126 0.00751 
a4 0.2 0.20002  β44 0.96300 0.92400 

b41 0 -0.00001  α1 0.07320 0.05740 
b42 0 0.00000  α2 0.28900 0.01420 
b43 0 0.00000  α3 0.14200 0.20700 
b44 -0.1 -0.10000  α4 -0.22800 -0.38500 

    δ1 0.00014 0.00006 

    δ2 0.00004 0.00031 

    δ3 0.00064 0.00020 

    δ4 0.00032 0.00032 
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Table S3.2 – Initial conditions, parameter values and estimates for a four-variable LV system exhibiting damped 

oscillations as presented in Figure 3b.  

 Initial Condition Estimate     
X1 0.3 0.3     
X2 0.3 0.3     
X3 0.4 0.4     
X4 0.6 0.6     
       

 

True 
Parameter 

Value ALVI-MI   MAR 
MAR with log 

transformation 

a1 0.3 0.30245  β11 1.05000 0.98800 
b11 -0.3 -0.30328  β21 0.14700 0.01610 
b12 -0.27 -0.27098  β31 -0.25300 -0.07880 

b13 -0.6 -0.60467  β41 -0.23100 -0.05360 
b14 -0.045 -0.04708  β12 -0.08350 -0.11600 
a2 0.4 0.40299  β22 0.88800 0.92200 
b21 0.2 0.19592  β32 0.04880 -0.03410 
b22 -0.4 -0.40118  β42 -0.00228 -0.07260 
b23 -0.4 -0.40578  β13 0.03660 -0.04410 
b24 -0.6 -0.60250  β23 -0.07340 -0.06540 
a3 0.7 0.71519  β33 0.71200 0.89700 
b31 -2.38 -2.39901  β43 -0.20500 -0.02050 

b32 0.35 0.34344  β14 -0.10400 -0.01220 
b33 -2.8 -2.82806  β24 -0.12800 -0.03300 

b34 0.35 0.33650  β34 0.03690 -0.14100 
a4 0.6 0.60791  β44 0.96100 0.88100 
b41 -0.96 -0.97003  α1 0.04710 -0.22200 
b42 -0.24 -0.24338  α2 0.08150 -0.17700 
b43 -0.96 -0.97466  α3 0.06750 -0.56600 
b44 -0.6 -0.60704  α4 0.08660 -0.38800 

    δ1 0.00000 0.00004 

    δ2 0.00002 0.00016 

    δ3 0.00015 0.00271 

    δ4 0.00015 0.00065 
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Table S3.3 – Initial conditions, parameter values and estimates for a four-variable LV system initially displaying 

erratic oscillations, but then converging to a limit cycle as presented in Figure 3c.  

 Initial Condition Estimate     
X1 0.3 0.3     
X2 0.3 0.3     
X3 0.4 0.4     
X4 0.6 0.6     
       

 

True 
Parameter 

Value ALVI-MI   MAR 
MAR with log 

transformation 

a1 1 0.98743  β11 0.87600 0.94673 
b11 -1 -0.99101  β21 0.26700 0.19269 
b12 -1.09 -1.08083  β31 -0.11100 -0.77772 
b13 -1.52 -1.51341  β41 -0.17600 -0.18648 
b14 0 0.01346  β12 -0.13600 -0.11408 
a2 0.72 0.72230  β22 0.90900 0.88847 
b21 0 -0.00274  β32 0.03980 0.59990 

b22 -0.72 -0.72223  β42 0.06220 0.11789 
b23 -0.3168 -0.31966  β13 -0.44100 0.00528 
b24 -0.9792 -0.97942  β23 0.07280 0.01411 
a3 1.53 1.53466  β33 0.86500 0.93625 
b31 -3.672 -3.67283  β43 -0.03720 -0.00153 
b32 0 -0.00071  β14 0.36500 0.00392 
b33 -1.53 -1.52615  β24 -0.19100 -0.17211 
b34 -0.7191 -0.73207  β34 -0.02410 0.33444 
a4 1.27 1.27361  β44 0.93800 0.97758 

b41 -1.5367 -1.53884  α1 0.02540 -0.12418 
b42 -0.6477 -0.64952  α2 0.01980 -0.00507 
b43 -0.4445 -0.44519  α3 0.03310 -0.28038 
b44 -1.27 -1.27581  α4 0.04680 -0.16530 

    δ1 0.00001 0.00057 

    δ2 0.00001 0.00012 

    δ3 0.00013 0.00112 

    δ4 0.00005 0.00022 
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Table S3.4 – Initial conditions, parameter values and estimates for a four-variable LV system displaying sustained 

oscillations as presented in Figure 3d. 

 Initial Condition Estimate     
X1 0.3 0.3     
X2 0.3 0.3     
X3 0.4 0.4     
X4 0.6 0.6     
       

 

True 
Parameter 

Value ALVI-MI   MAR 
MAR with log 

transformation 

a1 0.3 0.27831  β11 0.96100 1.02036 
b11 -0.3 -0.30250  β21 0.17900 0.10195 
b12 -0.27 -0.25033  β31 -0.15100 -0.09094 

b13 -0.6 -0.59705  β41 -0.20000 -0.04845 
b14 -0.045 -0.00606  β12 -0.07430 -0.05021 
a2 0.4 0.36675  β22 0.94200 0.98452 
b21 0.2 0.19193  β32 -0.05210 -0.02708 
b22 -0.4 -0.36840  β42 -0.01790 -0.03530 
b23 -0.4 -0.40045  β13 -0.09270 0.00210 
b24 -0.6 -0.53672  β23 0.00417 -0.00943 
a3 0.7 0.64222  β33 0.82100 1.05860 
b31 -2.38 -2.37532  β43 -0.15000 0.02181 

b32 0.35 0.39856  β14 -0.00981 0.02438 
b33 -2.45 -2.42900  β24 -0.10400 -0.00099 

b34 0.35 0.44414  β34 -0.12500 -0.32180 
a4 0.6 0.55927  β44 0.96300 0.89997 
b41 -0.96 -0.96318  α1 0.05890 0.00507 
b42 -0.24 -0.20356  α2 0.01900 0.11510 
b43 -0.96 -0.95279  α3 0.13300 -0.41484 
b44 -0.3 -0.22817  α4 0.09470 -0.17804 

    δ1 0.00003 0.00018 

    δ2 0.00010 0.00101 

    δ3 0.00014 0.00935 

    δ4 0.00008 0.00056 
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Table S3.5 – Initial conditions, parameter values and estimates for a four-variable LV system displaying 

deterministic chaos (chaos 1) as presented in Figure 3e. 

 Initial Condition Estimate     
X1 0.3 0.3     
X2 0.3 0.3     
X3 0.4 0.4     
X4 0.6 0.6     
       

 

True 
Parameter 

Value ALVI-MI   MAR 
MAR with log 

transformation 

a1 1 1.01561  β11 0.85600 1.00059 
b11 -1 -1.01294  β21 0.26400 0.20355 
b12 -1.09 -1.10110  β31 -0.16900 -0.79454 
b13 -1.52 -1.52409  β41 -0.21800 -0.23777 
b14 0 -0.01741  β12 -0.14300 -0.10901 
a2 0.72 0.72904  β22 0.88800 0.88053 
b21 0 -0.00777  β32 0.01640 0.59018 

b22 -0.72 -0.72674  β42 0.02020 0.08015 
b23 -0.3168 -0.32100  β13 -0.47500 -0.03240 
b24 -0.9792 -0.98775  β23 0.10500 0.03330 
a3 1.53 1.48293  β33 1.07000 0.76513 
b31 -3.5649 -3.52631  β43 0.06420 -0.03995 
b32 0 0.03573  β14 0.38200 0.17765 
b33 -1.53 -1.50898  β24 -0.24000 -0.23158 
b34 -0.7191 -0.67335  β34 -0.21500 0.90744 
a4 1.27 1.25074  β44 0.80900 1.08027 

b41 -1.5367 -1.52127  α1 0.03510 0.01644 
b42 -0.6477 -0.63310  α2 0.04320 -0.01131 
b43 -0.4445 -0.43667  α3 0.11000 -0.11896 
b44 -1.27 -1.25061  α4 0.11500 -0.24402 

    δ1 0.00002 0.00114 

    δ2 0.00002 0.00015 

    δ3 0.00022 0.00191 

    δ4 0.00006 0.00024 
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Table S3.6 – Initial conditions, parameter values and estimates for a four-variable LV system displaying 

deterministic chaos (chaos 2) as presented in Figure 3f. 

 Initial Condition Estimate     
X1 0.3 0.3     
X2 0.3 0.3     
X3 0.4 0.4     
X4 0.6 0.6     
       

 

True 
Parameter 

Value ALVI-MI   MAR 
MAR with log 

transformation 

a1 0.3 0.29277  β11 1.05000 0.97700 
b11 -0.3 -0.25379  β21 0.00560 0.02030 
b12 -0.27 -0.28051  β31 -0.31600 -0.08880 

b13 -0.6 -0.55795  β41 -0.23000 -0.06400 
b14 -0.045 -0.07045  β12 -0.09830 -0.01780 
a2 0.4 0.39048  β22 0.99000 1.00000 
b21 0.2 0.26661  β32 0.08310 -0.02620 
b22 -0.4 -0.41601  β42 -0.01940 -0.01610 
b23 -0.4 -0.33988  β13 -0.00541 -0.06900 
b24 -0.6 -0.63818  β23 -0.12100 -0.07290 
a3 0.8 0.77659  β33 0.70200 0.87400 
b31 -2.38 -2.23922  β43 -0.18000 -0.05050 

b32 0.35 0.31928  β14 -0.08040 0.05960 
b33 -2.45 -2.32117  β24 0.00941 -0.02020 

b34 0.35 0.27470  β34 0.07400 -0.14500 
a4 0.6 0.58578  β44 0.97300 0.94100 
b41 -0.96 -0.86962  α1 0.05270 -0.11500 
b42 -0.24 -0.26048  α2 0.02820 -0.09870 
b43 -0.96000 -0.87774  α3 0.07760 -0.53700 
b44 -0.30000 -0.34969  α4 0.10200 -0.28000 

    δ1 0.00000 0.00006 

    δ2 0.00002 0.00023 

    δ3 0.00009 0.00115 

    δ4 0.00007 0.00025 
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Table S4.1 – ALVI-MI estimates for five experimental datasets from (Mühlbauer et al., 2020). Data came from 

experiments described in (Gause, 1934), (McLaren and Peterson, 1994) and (Huffaker, 1958). See R package gauseR 

(Mühlbauer et al., 2020) for datasets “gause_1934_science_f02_03”, “gause_1934_book_f32”, “mclaren_1994_f03” and 

“huffaker_1963” for details on observations.  Parameter estimates from Mühlbauer et al. can also be found in Table S8 in 

their paper. 

Example 1 - Paramecium caudatum in monoculture. The slopes were estimated from an 8DF-spline from data 

without log transformation and ALVI-MI using a subsample of spline points at the 3rd and 12th days. 

  Mühlbauer et al. Estimate Absolute Difference 

a1 1.259 0.92289 0.33611 
b11 -0.005 -0.00456 0.00044 

    
    
Example 2 - Paramecium caudatum and Paramecium aurelia in a mixed population competition study.  ALVI-MI 

was estimated from 10DF and 7DF-splines for P. caudatum and P. aurelia, respectively. Spline points were taken at 

days 4, 8 and 11. 

  Mühlbauer et al. Estimate Absolute Difference 

a1 1.259 0.98677 0.27223 
b11 -0.005 -0.00409 0.00091 
b12 1.259 -0.00649 1.26549 
a2 -0.005 0.79868 0.80368 
b21 1.259 -0.00136 1.26036 

b22 -0.005 -0.00536 0.00036 
    

    
Example 3 - Predator-prey interactions between Didinium nasutum and Paramecium caudatum. ALVI-MI 

estimates were calculated using 14DF and 10DF-splines, respectively, using a subsample of the 122nd , 140th, 168th 

points of the second spline. 

  Mühlbauer et al. Estimate Absolute Difference 

a1 1.099 1.70706 0.60806 

b11 -0.013 -0.03887 0.02587 
b12 -0.078 -0.11360 0.03560 
a2 -0.89 -1.27639 0.38639 
b21 0.084 0.14275 0.05875 
b22 -0.002 0.01565 0.01765 

    
    
Example 4 - Multi-trophic dynamics for wolves, moose, and fir trees. ALVI-MI estimates were calculated using log-

abundances and 8DF-splines. Spline points were chosen as a subsample corresponding to the years 1973, 1978, 1979 

and 1982. 

  Mühlbauer et al. Estimate Absolute Difference 

a1 0.01 -1.901823 1.91182 
b11 -0.003 0.028812 0.03181 
b12 0.00004 0.000003 0.00004 
b13 0 2.754448 2.75445 

a2 2.021 0.331244 1.68976 
b21 -0.088 -0.006836 0.08116 

b22 0 -0.000107 0.00011 
b23 0.002 -0.090569 0.09257 
a3 0.238 2.779411 2.54141 
b31 0 -0.051545 0.05154 
b32 -0.0002 0.000494 0.00069 
b33 -0.139 -4.693609 4.55461 
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Example 5 - Predator-prey interactions between E. sexmaculatus and T. occidentalis. ALVI-MI estimates were 

calculated using 15DF and 20DF-splines, respectively. The splines were constructed using log-abundances of the 

dependent variables, using a subsample of spline points corresponding to the 17th, 48th and 55th datapoints. 

  Mühlbauer et al. Estimate Absolute Difference 

a1 0.187 0.11148 0.07552 

b11 0 0.00003 0.00003 
b12 -0.028 -0.02960 0.00160 
a2 -0.377 -0.80007 0.42307 
b21 0.0012 0.00251 0.00131 
b22 -0.024 -0.03144 0.00744 
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Table S4.2 – ALVI-LR estimates for five experimental datasets from (Mühlbauer et al., 2020). Data came from (Gause, 

1934), (McLaren and Peterson, 1994) and (Huffaker et al., 1963) experiments. See R package gauseR (Mühlbauer et al., 

2020) datasets “gause_1934_science_f02_03”, “gause_1934_book_f32”, “mclaren_1994_f03” and “huffaker_1963” for 

details on observations. Parameter estimates from Mühlbauer et al. can also be found in Table S8 of their paper. 

Example 1 - Paramecium caudatum in monoculture, analyzed with 8DF-spline 

  Mühlbauer et al. ALVI-LR Estimate Absolute Difference 

a1 1.259 0.93948 0.31952 
b11 -0.005 -0.00465 0.00035 

    
    
Example 2 - Paramecium caudatum and Paramecium aurelia in mixed population, analyzed with 10DF and 7DF-
splines   

  Mühlbauer et al. ALVI-LR Estimate Absolute Difference 

a1 1.259 0.85524 0.40376 
b11 -0.005 -0.00289 0.00211 
b12 -0.008 -0.00580 0.00220 
a2 1.026 0.84423 0.18177 
b21 -0.002 -0.00187 0.00013 

b22 -0.007 -0.00553 0.00147 
    

    
Example 3 - Predator-prey interactions between Didinium nasutum and Paramecium caudatum, analyzed with 
14DF and 10DF-splines 

  Mühlbauer et al. ALVI-LR Estimate Absolute Difference 

a1 1.099 0.45652 0.64248 
b11 -0.013 0.02117 0.03417 
b12 -0.078 -0.11495 0.03695 
a2 -0.89 -0.98922 0.09922 
b21 0.084 0.16549 0.08149 
b22 -0.002 -0.01146 0.00946 

    
    
Example 4 - Multi-trophic dynamics for wolves, moose, and fir trees, analyzed with 28DF, 24DF and 28DF-splines 

  Mühlbauer et al. ALVI-LR Estimate Absolute Difference 

a1 0.01 -0.06509 0.07509 
b11 -0.003 0.00164 0.00464 
b12 0.00004 0.00007 0.00003 

b13 0 -0.13411 0.13411 
a2 2.021 0.20754 1.81346 

b21 -0.088 -0.00483 0.08317 
b22 0 -0.00009 0.00009 
b23 0.002 0.06010 0.05810 
a3 0.238 -0.08580 0.32380 
b31 0 0.00343 0.00343 
b32 -0.0002 -0.00020 0.00000 
b33 -0.139 0.43352 0.57252 

    
    
Example 5 - Predator-prey interactions between E. sexmaculatus and T. occidentalis, analyzed with 15DF and 
20DF-splines 

  Mühlbauer et al. ALVI-LR Estimate Absolute Difference 

a1 0.344 0.03525 0.30875 
b11 0 0.00038 0.00038 

b12 -0.059 -0.03619 0.02281 
a2 -0.236 -0.44687 0.21087 
b21 0.0005 0.00159 0.00109 
b22 0 -0.03540 0.03540 
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Table S4.3 – MAR estimates for five experimental datasets from (Mühlbauer et al., 2020). Data came from (Gause, 

1934), (McLaren and Peterson, 1994) and (Huffaker et al., 1963) experiments. See R package gauseR (Mühlbauer et al., 

2020) for datasets “gause_1934_science_f02_03”, “gause_1934_book_f32”, “mclaren_1994_f03” and “huffaker_1963” 

for details on observations. Parameter estimates from Mühlbauer et al. can also be found in Table S8 of their paper. 

Example 1 - Paramecium caudatum in monoculture. 

 MAR 
MAR log 

transformation  
MAR with data 

smoothing 

MAR log 
transformation with 

smoothing 

β1 0.90000 0.85550 0.90400 0.74718 
α1 9.93000 0.15590 10.22600 0.21106 
δ1 287.57000 0.06920 126.15300 0.00525 

 

Example 2 - Paramecium caudatum and Paramecium aurelia in coculture  

 MAR 
MAR log 

transformation  
MAR with data 

smoothing 

MAR log 
transformation with 

smoothing 

β11 0.81800 0.73590 0.91500 0.98309 
β21 0.07170 0.03240 0.11600 0.03625 
β12 -0.16030 -0.07020 -0.16900 -0.26372 
β22 0.82140 0.71450 0.87700 0.73153 
α1 27.54890 1.38260 0.91000 0.07810 
α2 20.30740 1.28150 5.82700 0.15430 
δ1 262.75870 0.17190 113.99000 0.03530 
δ2 253.59620 0.03470 11.12100 0.00202 

 

Example 3 - Predator-prey interactions between Didinium nasutum and Paramecium caudatum 

 MAR 
MAR log 

transformation  
MAR with data 

smoothing 

MAR log 
transformation with 

smoothing 

β11 0.52400 0.80250 0.37800 0.86900 
β21 0.57700 0.10510 0.52100 0.18700 
β12 -0.57200 -0.21950 -0.45100 -0.25400 
β22 0.63300 0.59490 0.69100 0.76500 
α1 12.93300 -1.11100 0.40300 -0.75400 
α2 -2.76100 0.06450 0.23900 0.70000 
δ1 94.22700 10.97630 140.72600 7.15700 
δ2 27.95400 23.00840 83.62600 9.82300 

 

 

 

 

 

 

Example 4 - Multi-trophic dynamics for wolves, moose, and fir trees 
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 MAR 
MAR log 

transformation  
MAR with data 

smoothing 

MAR log 
transformation with 

smoothing 

β11 0.62900 0.69390 1.13000 1.17360 
β21 -4.15000 -0.04540 -3.48000 -0.04426 
β31 -0.00083 -0.02210 0.00137 0.07236 
β12 0.00517 0.07570 0.00148 0.01665 
β22 0.84800 0.86270 0.90300 0.89080 
β32 -0.00007 -0.12840 -0.00009 -0.13234 
β13 -27.30000 -0.34650 10.70000 0.22128 
β23 96.60000 0.08020 245.00000 0.13054 
β33 0.89000 0.89160 1.11000 1.06497 
α1 15.90000 0.12600 -0.35700 -0.02613 
α2 241.00000 1.18230 27.80000 0.02986 
α3 0.14200 0.85670 -0.00485 -0.01065 
δ1 32.30000 0.06210 3.88000 0.00553 
δ2 15000.00000 0.01080 1290.00000 0.00127 
δ3 0.00382 0.02160 0.00098 0.00591 

 

Example 5 - Predator-prey interactions between E. sexmaculatus and T. occidentalis 

 MAR 
MAR log 

transformation 
MAR with data 

smoothing 

MAR log 
transformation with 

smoothing 

β11 1.01500 0.88120 1.11000 1.05163 
β21 0.00900 0.53850 0.00718 0.47337 
β12 -17.79700 -0.09960 -16.00000 -0.10626 
β22 0.56200 0.75520 0.73200 0.86330 
α1 94.24600 0.80680 0.47700 -0.00088 
α2 -1.28500 -2.86420 -0.02580 -0.01771 
δ1 15440.27300 0.13470 1360.00000 0.02078 
δ2 5.55100 0.33790 1.93000 0.08104 

 

 

 

  



 
51 

Table S5.1 – Synthetic MAR data without noise 

MAR Results    
t X1 X2 X3 X4 

1 5 10 15 20 
2 5.62418 35.2103 21.4125 10.3696 
3 13.077 68.6603 16.2175 6.98986 
4 30.8946 57.2944 7.75681 8.13234 
5 42.7475 27.4855 3.71568 13.9927 
6 31.3421 13.2593 2.63367 24.3619 
7 16.5916 9.92497 3.02139 31.2622 
8 9.868 12.4469 4.56419 27.4996 
9 8.72248 20.3998 6.5998 19.5587 

10 11.2768 30.657 7.33895 14.4998 
11 16.7965 33.724 6.20514 13.314 
12 21.9882 27.4413 4.66674 15.2345 
13 22.1248 19.9474 3.79027 19.1227 
14 18.0405 16.0646 3.69825 22.5386 
15 14.0932 15.9557 4.22409 22.9275 
16 12.3388 18.7495 5.03802 20.5772 
17 12.7869 22.8183 5.59201 17.8653 
18 14.8002 25.3774 5.51118 16.4484 
19 17.1129 24.6804 4.99159 16.6605 
20 18.1251 21.9731 4.48974 18.0462 
21 17.3171 19.5701 4.27918 19.6396 
22 15.6847 18.6862 4.39198 20.3941 
23 14.456 19.3693 4.70288 19.9587 
24 14.1822 20.9554 4.99681 18.8896 
25 14.7787 22.3651 5.08888 17.9987 
26 15.7517 22.7146 4.95911 17.7463 
27 16.4482 21.9861 4.74141 18.1246 
28 16.4701 20.8982 4.58774 18.7896 
29 15.9468 20.1878 4.56995 19.2878 
30 15.3325 20.1628 4.6678 19.3417 
31 15.0101 20.6857 4.80099 19.0122 
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Table S5.2 –Synthetic MAR data with process noise (noisy MAR)  

Noisy MAR data    
t X1 X2 X3 X4 

1 5 10 15 20 
2 5.348711 35.67645 21.24414 11.33115 
3 12.68871 73.68564 15.69769 7.602699 
4 28.4417 58.22924 7.677451 8.36752 
5 40.38627 31.11175 3.80337 13.74682 
6 31.35761 15.43932 2.37942 29.43823 
7 16.35921 11.50274 2.862113 36.3036 
8 9.354332 12.98424 4.058828 29.35258 
9 7.685839 21.35519 5.988792 24.13497 

10 10.19144 32.84542 6.76258 14.9041 
11 16.91705 37.57379 6.463126 14.60513 
12 22.32645 34.09477 4.028325 16.32554 
13 23.42601 24.50092 3.053426 22.88628 
14 19.95015 13.80835 2.855883 21.25741 
15 14.53545 15.54018 2.687748 28.09769 
16 10.56748 19.46347 4.100027 23.3091 
17 11.6392 23.78792 4.736091 24.28919 
18 13.60684 24.85652 5.581968 18.72783 
19 15.55572 25.64391 5.618706 15.15855 
20 16.01914 28.48243 3.98025 16.41035 
21 17.42047 23.53516 3.913988 15.10063 
22 20.59512 19.4383 3.094358 15.69554 
23 20.04429 14.90893 3.033626 24.03874 
24 16.92779 13.64164 3.412567 29.75478 
25 10.70504 13.47052 4.30823 32.5117 
26 8.284209 21.29853 5.626362 18.91741 
27 11.17606 35.06573 5.989669 16.06294 
28 15.30398 33.2859 4.745014 13.83807 
29 24.07927 26.15628 3.85889 16.68449 
30 20.98646 15.34366 3.163762 21.75982 
31 16.75627 13.3735 3.46612 29.3738 
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Table S5.3 – Synthetic MAR data with process noise and replicates (replicate MAR) 

t X1 X2 X3 X4 
1 5 10 15 20 

1 5 10 15 20 

1 5 10 15 20 

1 5 10 15 20 

1 5 10 15 20 

2 6.824361 35.16599 18.89286 11.20497 

2 7.140826 37.90816 19.56782 11.1861 

2 6.419448 43.02967 24.34981 10.49169 

2 6.05405 41.2587 23.90904 9.399141 

2 5.210658 36.29504 22.36168 10.34802 

3 15.28585 52.04399 15.13403 7.238021 

3 16.98281 65.05571 13.10156 7.05455 

3 16.57298 85.22612 18.48274 7.349583 

3 16.19917 63.11921 18.64078 7.702582 

3 11.00963 58.04277 18.08912 7.002301 

4 26.611 39.69185 7.772539 7.884168 

4 34.47372 39.76995 6.506274 10.41084 

4 41.175 50.93835 7.71743 10.0942 

4 31.16793 48.70791 8.994543 8.972057 

4 28.31321 50.56873 9.315256 6.666504 

5 27.51418 19.49706 4.270684 14.97806 

5 37.22747 18.55792 3.621166 20.63883 

5 46.13679 21.27444 3.731755 14.89004 

5 34.42344 30.07884 4.993 15.49867 

5 40.20807 27.69478 3.68488 13.15327 

6 19.3429 13.61173 3.958714 22.04277 

6 17.05215 11.34199 3.278152 30.66941 

6 33.02304 9.387348 3.430976 22.62625 

6 27.13532 17.18788 3.897519 22.08733 

6 26.45495 14.35704 2.647763 25.19314 

7 15.76911 14.08855 4.4589 28.75703 

7 10.05276 13.22159 4.477918 27.6154 

7 16.57564 10.77569 4.304613 30.14191 

7 19.26835 14.48505 4.079162 24.61664 

7 16.12083 9.838952 3.340428 32.4906 

8 11.18645 15.10148 6.138031 22.90268 

8 7.935696 26.17905 6.136483 19.06441 

8 9.725832 16.558 7.075358 24.15163 

8 13.71308 12.90949 4.408927 25.66316 

8 8.855132 10.79515 5.2759 34.28205 

11 18.35118 40.96935 7.867435 12.23562 

11 24.0257 27.39741 3.152885 15.61119 

11 22.36637 32.77024 6.421379 12.83701 

11 15.58502 37.86238 4.60214 11.52865 

11 20.88114 35.67158 5.660139 12.95133 

14 14.05995 12.13665 3.591629 20.26163 

14 11.19216 14.35631 4.181295 22.72751 

14 12.04293 18.32562 4.884143 21.96059 

14 18.03127 12.6617 2.720828 25.28884 

14 13.23772 15.31324 4.582637 20.50827 

17 14.61293 23.61389 5.714322 18.331 

17 17.62079 30.33241 6.897818 15.35878 

17 18.80657 31.36387 5.839329 13.26646 

17 10.34518 21.73182 5.972099 18.41633 

17 15.03356 23.89785 4.270884 15.44892 
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20 21.07394 19.92159 4.706945 17.26361 

20 20.76206 23.40946 4.342067 16.35985 

20 15.42562 14.47828 4.306908 21.14931 

20 20.95617 21.4038 3.978127 15.6198 

20 13.75127 16.88018 3.678261 22.68312 

23 13.41462 17.15951 5.90813 19.95043 

23 14.64681 20.98447 4.511556 18.69095 

23 15.28076 19.79288 5.263899 16.61078 

23 12.595 18.04093 4.308493 22.52222 

23 16.08145 29.17789 5.73419 13.7156 

26 17.12985 27.17032 5.198294 14.47482 

26 13.20432 27.43056 5.320148 17.11185 

26 18.08855 19.68478 3.087013 15.64236 

26 18.31181 24.89349 5.215812 16.24242 

26 18.62125 20.08891 3.991524 23.46726 

29 18.3059 19.77749 4.947163 16.09594 

29 17.88635 21.30849 4.690069 20.27669 

29 11.76912 13.69399 3.731459 24.47256 

29 19.4553 15.7721 4.754019 19.41696 

29 16.04477 20.65494 5.300268 17.14123 
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Table S5.4 – Initial conditions and ALVI-MI parameters estimates for the synthetic MAR data 

 Noise MAR  Replicate MAR 

    

Spline 15DF-spline  11DF-spline 

Point subsample t = 2, 4, 7, 22, 27  t = 1, 3, 11, 13, 15 

    

 Initial condition  Initial condition 

X1 4.421  4.609 
X2 11.830  11.745 
X3 17.262  16.820 
X4 18.619  18.670 

    
Parameter  Estimate  Estimate 

a1 0.873  1.930 
b11 -0.012  -0.022 
b12 0.007  0.001 
b13 -0.001  -0.016 
b14 -0.040  -0.082 
a2 0.539  1.112 
b21 -0.044  -0.035 
b22 -0.001  -0.016 
b23 0.037  0.041 
b24 0.000  -0.023 
a3 0.242  -0.623 
b31 -0.019  -0.014 
b32 -0.010  -0.006 
b33 0.000  0.021 
b34 0.013  0.047 
a4 -0.412  -0.809 
b41 0.040  0.030 
b42 -0.005  0.007 
b43 -0.006  -0.013 
b44 -0.004  0.013 

    

Estimates vs Data SSE 1221.9  385.3 
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Table S5.5 – Initial conditions and ALVI-LR parameters estimates for the synthetic MAR data 

 Noise MAR  Replicate MAR 

    

Spline 

25,14,18,20, DF-

spline  15DF-spline 

    

    

 Initial condition  Initial condition 

X1 4.874  5 
X2 12.366  10 
X3 16.270  15 
X4 19.662  20 

    
Parameter  Estimate  Estimate 

a1 0.622  0.412 
b11 -0.014  -0.016 
b12 0.015  0.016 
b13 -0.009  0.000 
b14 -0.034  -0.027 
a2 0.383  0.756 
b21 -0.030  -0.034 
b22 -0.005  -0.017 
b23 0.043  0.060 
b24 0.001  -0.007 
a3 0.239  0.321 
b31 -0.020  -0.019 
b32 -0.011  -0.014 
b33 0.003  0.013 
b34 0.015  0.012 
a4 -0.531  -0.580 
b41 0.033  0.031 
b42 0.000  0.003 
b43 -0.011  -0.018 
b44 0.002  0.005 

    

Estimates vs Data SSE 1360.4  754.2 
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Table S6.1 – Parameter values and initial conditions estimated for the ‘grey whales’ dataset (Gerber et al., 1999) 

Results generated with ALVI-MI with 3DF-spline 

and a data sample composed of spline values in 

1959 and 1966. 

   

Parameter True value Estimate 

   
ALVI-MI  
a1   0.0948 
b11  -3.79E-06 
X1(0) 2894 3663.9550 

   
MAR   
α1   1260 
β11  0.943 
δ1  7240000 
X1(0) 2894  

   
MAR with log 
transformation  
α1   1.0368 
β11  0.9512 
δ1  0.0327 
X1(0) 2894  
   
MAR with smoothing  

α1   597 
β11  0.9930 
δ1  199000 
X1(0) 2894  

   
MAR with log transformation 
and smoothing  

α1   0.4902 
β11  0.9535 
δ1  0.0014 
X1(0) 2894  
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Table S6.2 – Parameters and initial conditions estimated for the ‘Wolves and Moose’ dataset (Vucetich, 2021) 

Results of ALVI-MI with 15DF-

splines and a data sample composed 

of spline values in 1991, 1994 and 

1997.      

ALVI-MI   

MAR with log 
transformation   

 

Initial 
condition  Estimate    

Initial 
condition Estimate 

X1 20 21.6545   X1 20 22.0000 

X2 538 560.5340   X2 538 564.0000 
        

Parameter 
 

Estimate   Parameter 
 

Estimate 

a1   -0.2732   β11   0.7670 

b11  0.0073   β21  -0.1788 

b12  0.0001   β12  0.0783 

a2  0.8431   β22  0.8277 

b21  -0.0380   δ1  0.4485 

b22   -0.0001   δ2   0.1758 
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Table S7 - Results of one-sided Wilcoxon rank test. 

 

Null hypothesis H0: 

 

Alternative hypothesis H1:  p-value  

SSE values of ALVI-MI are equal or higher than corresponding MAR 

values 

 

SSE values of ALVI-MI are less than corresponding MAR values  0.0024 
  

SSE values of ALVI-MI are equal or higher than corresponding MAR 

values for log transformed variables 

 

SSE values of ALVI-MI are less than corresponding MAR values 

for log transformed variables 
 0.0034 

  

SSE values of ALVI-MI are equal or higher than corresponding MAR 

values for smoothed data  

 

SSE values of ALVI-MI are less than corresponding MAR values 

for smoothed data 
 0.0508 

  

SSE values of ALVI-MI are equal or higher than corresponding MAR 

values for log transformed variables and smoothed data 

 

SSE values of ALVI-MI are less than corresponding MAR values 

for log transformed variables and smoothed data 
 0.0024 

  

SSE values of the ALVI-MI are equal or higher than SSE values 

obtained with the ALVI-LR 

 

SSE values of ALVI-MI are less than SSE values obtained with the 

ALVI-LR  
 0.0010 

  

SSE values of MAR with log transform are equal or higher than MAR 

values 

 SSE values of MAR with log transform are less than MAR values  0.3501 
 

SSE values of MAR with data smoothing are equal or higher than MAR 

values without 

 

SSE values of MAR with data smoothing are less than MAR values 

without 
 0.6812 

  

SSE values of MAR with log transformation and data smoothing are 

equal or higher than those for MAR with log transformation values 

 

SSE values of MAR with log transformation and data smoothing are 

less than those for MAR with log transformation values 
 0.6177 
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Table S8 – Sum of absolute differences between true and estimated parameters. Bold font indicates the lower 

difference in each case.  

 

ALVI-
LR 

ALVI-MI MAR 
MAR log 

Trans 
MAR with 
smoothing 

MAR with 
log and 

smoothing 

Noisy LV data 0.0143 0.0139     

Replicate LV data 0.0070 0.0056     

Noisy MAR data   4.2682 9.3141 7.3977 11.4039 

Replicate MAR data   10.6323 12.6328 11.0209 11.2835 

SynthData1 0.0002 0.0004     

SynthData2 0.2083 0.1553     

SynthData3 1.0698 0.0982     

SynthData4 0.1918 0.6080     

SynthData5 0.8240 0.3621     

SynthData6 0.1879 0.9779     
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Table S9.1 – SSEs for the LV datasets. The model presented in Figure 1 was initiated with different values that were 

chosen as ratios of the system steady state. The Table shows the SSEs of the noise-free data and the fits from the different 

methods when the data were obtained by (a) random sampling and (b) when each timepoint was sampled five times.  

 

 

SSEs  
    

 

 
 

    

 

Noisy LV dataset  
    

 

 STST * 0.001 STST * 0.01 STST * 0.1 STST * 1.9 STST * 10 STST * 100 

ALVI-MI method 38.792 4.98419 4.149 1.098 43.056 38.489 

MAR no transform 587.982 238.8986 21.554 0.47 37.478 218.094 

MAR log transform 621.077 136.7711 5.189 0.358 11.017 50.584 

MAR no transform with smoothing 504.071 240.2219 58.076 4.032 776.266 66825.211 

MAR log transform with smoothing 752.466 186.2173 22.637 4.33 718.701 60118.749 

       

       

       

Replicate LV dataset      
 

 STST * 0.001 STST * 0.01 STST * 0.1 STST * 1.9 STST * 10 STST * 100 

ALVI-MI method 143.767 14.14818 1.137 0.852 16.599 252.005 

MAR no transform 605.644 237.7721 10.323 0.534 386.576 72524.754 

MAR log transform 694.657 146.5051 3.829 0.175 16.362 6430.865 

MAR no transform with smoothing 566.840 238.8223 20.658 1.372 312.168 34112.580 

MAR log transform with smoothing 537.914 151.4522 13.394 1.562 270.309 27135.802 
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Table S9.2 - Steady-State SSEs for the LV datasets. The model presented in Figure 1 was initiated with different values 

that were chosen as ratios of the system steady state. The objective here was to evaluate how well the different methods 

estimate the steady state of the model. The Table shows the sum of SSEs between the last five datapoints of noise free data 

and the fits from the different methods when the data were obtained by (a) random sampling and (b) when each timepoint 

was sampled five times.  

 

 

Steady State SSEs  
    

 

 
 

    

 

Noisy LV dataset  
    

 

 STST * 0.001 STST * 0.01 STST * 0.1 STST * 1.9 STST * 10 STST * 100 

ALVI-MI method 0.107 0.107 0.026 0.017 0.266 0.535 

MAR no transform 2.661 0.202 0.095 0.01 0.231 0.218 

MAR log transform 0.651 0.112 0.01 0.012 0.174 0.171 

MAR no transform with smoothing 0.983 0.04 5.643 0.015 0.242 0.23 

MAR log transform with smoothing 1.212 0.408 0.384 0.01 0.296 0.793 

       

       

       

Replicate LV dataset      
 

 STST * 0.001 STST * 0.01 STST * 0.1 STST * 1.9 STST * 10 STST * 100 

ALVI-MI method 4.628 0.06 0.016 0.029 0.562 0.069 

MAR no transform 6.377 0.47 0.007 0.011 0.072 14.18 

MAR log transform 2.93 0.184 0.02 0.005 0.083 0.106 

MAR no transform with smoothing 0.27 0.846 0.51 0.003 0.253 0.084 

MAR log transform with smoothing 36.118 1.092 0.041 0.003 0.119 0.323 
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Table S9.3: Number of parameter estimates with signs opposite to the true parameters in the artificial LV system. 

The model presented in Figure 1 was initiated with different values that were chosen as ratios of the system steady state. 

To infer the accuracy of the parameter estimation methods, we counted how many estimates have the opposite sigs in 

comparison with the original parameter. The Table shows the number of sign changes in the estimates relative to the original 

parameters from the different methods when the data were obtained by (a) random sampling and (b) when each timepoint 

was sampled five times.  

Signal flips  
    

 

 
 

    

 

Noisy LV dataset  
    

 

 STST * 0.001 STST * 0.01 STST * 0.1 STST * 1.9 STST * 10 STST * 100 

ALVI-MI method 0 0 3 3 4 7 

MAR no transform 7 8 7 5 6 4 

MAR log transform 6 7 7 5 5 5 

MAR no transform with smoothing 6 6 6 10 9 11 

MAR log transform with smoothing 5 6 5 10 9 9 

       

       

       

Replicate LV dataset      
 

 STST * 0.001 STST * 0.01 STST * 0.1 STST * 1.9 STST * 10 STST * 100 

ALVI-MI method 0 2 0 3 4 4 

MAR no transform 6 7 7 7 5 7 

MAR log transform 7 7 6 4 7 6 

MAR no transform with smoothing 6 6 6 10 12 12 

MAR log transform with smoothing 6 6 6 9 10 10 
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Table S10.1 – SSEs for the MAR datasets. The model presented in Figure 1 was initiated with different values that were 

chosen as ratios of the system steady state.  The Table shows the SSEs of the noise-free data and the fits from the different 

methods when the data were obtained by (a) random sampling and (b) when each timepoint was sampled five times.  

 

 

 

SSEs  
    

 

 
 

    

 

Noisy LV dataset  
    

 

 STST * 0.001 STST * 0.01 STST * 0.1 STST * 1.9 STST * 10 STST * 100 

ALVI-MI method 1892.33 1251.964 426.909 224.814 6550.551 24108.298 

MAR no transform 350.043 253.891 221.893 234.885 249.726 719.055 

MAR log transform 291.211 252.903 233.242 137.237 156.572 259.335 

MAR no transform with smoothing 1391.574 929.278 511.268 797.641 6022.958 198393.566 

MAR log transform with smoothing 3350.012 1937.803 1033.486 1890.82 5828.088 154629.128 

       

       

       

Replicate LV dataset      
 

 STST * 0.001 STST * 0.01 STST * 0.1 STST * 1.9 STST * 10 STST * 100 

ALVI-MI method 368.937 163.717 80.936 137.877 359.973 15637.372 

MAR no transform 307.720 131.085 68.772 101.993 243.564 1777.944 

MAR log transform 59.903 75.688 90.422 88.308 292.391 1258.105 

MAR no transform with smoothing 346.174 247.237 148.283 132.142 2474.397 104256.158 

MAR log transform with smoothing 1245.179 559.108 80.936 137.877 2259.931 95591.528 
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Table S10.2 - Steady State SSEs for the MAR datasets. The model presented in Figure 2 was initiated with different 

values that were chosen as ratios of the system steady state. The objective here was to evaluate how well the different 

methods estimate the steady state of the model. The Table shows the SSEs between the last five datapoints of noise-free 

data and the fits from the different methods when the data were obtained by (a) random sampling and (b) when each 

timepoint was sampled five times.  

 

Steady State SSEs  
    

 

 
 

    

 

Noisy LV dataset  
    

 

 STST * 0.001 STST * 0.01 STST * 0.1 STST * 1.9 STST * 10 STST * 100 

ALVI-MI method 393.039 45.222 7.144 16.774 22.97 7.312 

MAR no transform 26.146 30.431 34.502 31.172 25.454 22.523 

MAR log transform 28.682 25.184 22.228 18.028 17.369 19.097 

MAR no transform with smoothing 64.236 42.837 16.971 383.562 389.408 58.176 

MAR log transform with smoothing 237.034 453.91 152.844 730.076 261.093 404.454 

       

       

       

Replicate LV dataset       

 STST * 0.001 STST * 0.01 STST * 0.1 STST * 1.9 STST * 10 STST * 100 

ALVI-MI method 0.87 0.806 3.464 4.606 21.093 2742.131 

MAR no transform 6.324 2.153 5.7 0.966 1.238 16.241 

MAR log transform 1.303 1.085 3.115 0.537 0.481 1.279 

MAR no transform with smoothing 4.922 6.002 13.272 1.01 0.774 6.148 

MAR log transform with smoothing 1.227 1.197 10.11 0.576 1.518 1.318 
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Table S10.3: Number of parameter estimates with sign opposite to the true parameter in the artificial MAR system. 

The model presented in Figure 2 was initiated with different values that were chosen as ratios of the system steady state.  

To infer the accuracy of the parameter estimation methods, we counted how many estimates have the opposite sign 

compared with the original parameter. The Table shows the number of signal changes in the estimates relative to the original 

parameters from the different methods when the data were obtained by (a) random sampling and (b) when each timepoint 

was sampled five times.  

 

 

Signal flips  
    

 

 
 

    

 

Noisy LV dataset  
    

 

 STST * 0.001 STST * 0.01 STST * 0.1 STST * 1.9 STST * 10 STST * 100 

ALVI-MI method 8 8 7 5 9 10 

MAR no transform 1 1 1 1 1 11 

MAR log transform 1 1 1 3 1 1 

MAR no transform with smoothing 1 1 1 0 5 4 

MAR log transform with smoothing 4 4 0 10 8 6 

       

       

       

Replicate LV dataset      
 

 STST * 0.001 STST * 0.01 STST * 0.1 STST * 1.9 STST * 10 STST * 100 

ALVI-MI method 9 7 9 6 5 8 

MAR no transform 1 1 1 7 7 8 

MAR log transform 1 7 1 7 8 6 

MAR no transform with smoothing 7 8 2 9 10 10 

MAR log transform with smoothing 3 4 2 8 10 6 
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Table S11: Degrees of freedom used in the initial condition study. 

 

LV artificial data           

  noisy dataset  replicate dataset 
STST * 0.001  40 40 40 8  10 10 10 8 
STST * 0.01  30 30 30 8  10 10 10 8 
STST * 0.1  8 8 8 8  8 8 8 8 
STST * 1.9  8 8 8 8  8 8 8 8 
STST * 10  8 8 8 8  8 8 8 8 
STST * 100  40 40 40 40  11 11 11 11 

           
           

           

MAR artificial data           

  noisy dataset  replicate dataset 
STST * 0.001  8 8 8 8  8 8 8 8 
STST * 0.01  8 8 8 8  8 8 8 8 
STST * 0.1  8 8 8 8  8 8 8 8 
STST * 1.9  8 8 8 8  8 8 8 8 
STST * 10  8 8 8 8  8 8 8 8 
STST * 100  8 8 8 8  8 8 8 8 
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