1 Acoustic Features Extracted to Define Speech Naturalness

Supplementary Table 1. Acoustic features extracted to define speech naturalness from whole utterances.

Туре	Feature	Description	Mathematical expression
Prosodic	Intensity (dB)	Mean	$\mu_2 = \frac{\sum_{n=0}^{N-1} X(n)}{N}$ where μ_2 is the mean, N is the total number of samples and X(n) is the intensity in dB at sample n.
Voice quality	Jitter (%)	Jitter local: average absolute difference between two consecutive periods, divided by the average period.	$ \begin{pmatrix} \underline{\sum_{i=2}^{P} T_i - T_{i-1} } \\ (P-1) \\ \end{pmatrix} / \underline{\sum_{i=1}^{P} T_i} \\ \end{pmatrix} X \ 100 \ \ \text{where } T_i \text{ is the duration of } i^{th} \text{ period, and } P \text{ is the number of periods.} $
		Jitter ppq5: 5-point period perturbation quotient. It is the average absolute difference between a period and the average of it and its four closest neighbors, divided by the average period.	$\left(\frac{\frac{\sum_{i=3}^{P-2} T_i - (T_{i-2} + T_{i-1} + T_i + T_{i+1} + T_{i+2} _{/5}}{(P-4)}}{\frac{\sum_{i=1}^{P} T_i}{P}}\right) X \ 100$ where T_i is the duration of i th period, and P is the number of periods.
	Shimmer (%)	Shimmer local: the average absolute difference between the amplitude of two consecutive periods, divided by the average amplitude.	$\left(\frac{\sum_{i=2}^{P} A_{i}-A_{i+1} }{(P-1)} \middle/ \frac{\sum_{i=1}^{P}A_{i}}{P}\right) X \ 100$ where A_{i} is the amplitude of i th period, and P is the number of periods.
		Shimmer rapq5: 5-point amplitude perturbation quotient. It is the average absolute difference between the amplitude of a period and the average of the amplitude of it and its four closest neighbors, divided by the average amplitude.	$\left(\frac{\frac{\sum_{i=3}^{p-2} A_i - (A_{i-2} + A_{i-1} + A_i + A_{i+1} + A_{i+2} /5}{(P-4)}}{\frac{\sum_{i=1}^{p}A_i}{P}}\right)X \ 100$ where A_i is the amplitude of i th period, and P is the number of periods.
	Mean harmonics- to-noise ratio (HNR; dB)	Relation of the energy of harmonics against the energy of noise-like frequencies.	If 99% of the signal is composed of harmonics and 1% is noise, then HNR is defined by: $HNR = 10\log_{10}(\frac{99}{1}) = 20 \text{ dB}$ Mean harmonics-to-noise ratio between time points t1 and t2 is defined by:

- 2 Naturalness-Reduced Voices: Acoustic Insight from Emotional Utterances
- 2.1 Anger

Supplementary Figure 1. Acoustic tendencies from human to level 2 of anger utterances as regards lexical stress: (A) duration, (B) median pitch. Graphs (C) to (F) detail trends on whole utterances. "*" p<0.05, "*" p<0.01, and "***" p<0.001, ns.: non-significant. η^2 is the generalized eta-squared for ANOVA, χ^2 is the test statistic when Friedman was applied, and W is Kendall's effect size.

Supplementary Figure 2. Naturalness reduction on disgust emotional prosodies as regards lexical stress: (A) duration, (B) median pitch. Graphs (C) to (F) detail trends on whole utterances. "*" p<0.05, "**" p<0.01, and "***" p<0.001, ns.: non-significant. η^2 is the generalized eta-squared for ANOVA, χ^2 is the test statistic when Friedman was applied, and W is Kendall's effect size.

2.3 Fear

]

Α

Duration (s)

Supplementary Figure 3. Naturalness reduction on fear emotional prosodies as regards lexical stress: (A) duration. Graphs (B) to (E) detail trends on whole utterances. "*" p<0.05, "**" p<0.01, and "***" p<0.001, ns.: non-significant. η^2 is the generalized eta-squared for ANOVA, χ^2 is the test statistic when Friedman was applied, and W is Kendall's effect size.

2.4 Happiness

Supplementary Figure 4. Naturalness reduction on happiness emotional prosodies as regards lexical stress: (A) duration, (B) median pitch. Graphs (C) to (F) detail trends on whole utterances. "*" p<0.05, " **" p<0.01, and "***" p<0.001, ns.: non-significant. η^2 is the generalized eta-squared for ANOVA, χ^2 is the test statistic when Friedman was applied, and W is Kendall's effect size.

2.5 Neutral

Supplementary Figure 5. Naturalness reduction on neutral emotional prosodies as regards lexical stress: (A) duration, (B) median pitch. Graphs (C) to (F) detail trends on whole utterances. "*" p<0.05, "**" p<0.01, and "***" p<0.001, ns.: non-significant. η^2 is the generalized eta-squared for ANOVA, χ^2 is the test statistic when Friedman was applied, and W is Kendall's effect size.

2.6 Sadness

Duration (s)

Α

p-value: ***, X²(2)=29.08, W=0.61

Supplementary Figure 6. Naturalness reduction on sadness emotional prosodies as regards lexical stress: (A) duration. Graphs (B) to (E) detail trends on whole utterances. "*" p<0.05, "**" p<0.01, and "***" p<0.001, ns.: non-significant. η^2 is the generalized eta-squared for ANOVA, χ^2 is the test statistic when Friedman was applied, and W is Kendall's effect size.

3 ERP: Standard Deviation

Happiness

Sadness

Supplementary Figure 7. Standard deviation of ERPs across participants.

Happiness

Supplementary Figure 8. Standard deviation of ERPs across words.