
Appendix

This article studied the unsteady incompressible flow of a couple stress Casson fluid through a

porous material in a channel. The direction of the flow is considered along the x-axis. The distance

between the plates is d. The length of both the plates is infinite. The fluid and both plates are at

rest at time t1 = 0, with ambient temperature and concentration T1 and C1, respectively. After time

t1 = 0+, the left plate at (y1 = 0) begins to oscillate with characteristic velocity U and frequency

ω, while the right plate at y = d stays at rest. The temperature and concentration of the left plate

are also raised to T-1 + (T-d − T-1)At1 and C1 + (Cd − C1)At1, respectively as displayed in Fig. 1.

In this appendix, the unsteady incompressible flow of couple stress Casson fluid is considered.

Figure 1: Geometry of the problem.

The governing equations for unsteady couple stress Casson fluid flow between infinite parallel

plates are given by:

The equation of continuity is defined as:

∂ρ

∂t
+ ∇̃ · (ρ~V) = 0, (1)
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Here "del" or "nabla" ∇ is a vector operator, t, ρ and ~V shows time variable, density, and the

velocity vector field receptively.

The velocity vector field is defined as ~V = (u, v, w) with u, v and w are the velocity components

along the axis i.e x, y and z axis.

For constant density, the flow becomes incompressible flow. Then Equation of continuity reduces

to:

~∇ · ~V =
∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0. (2)

In the present work, one dimensional and unidirectional flow is considered. Thus, the velocity

field ~V can be expressed as [? ]:

~V = (u(y, t), 0, 0). (3)

For our flow, the velocity, temperature, and concentration profiles are expressed as:

~V = (u(y, t), 0, 0), T = (T(y, t), 0, 0), C = (C(y, t), 0, 0). (4)

for incompressible Casson is stated as:

τij =

2
(

µp +
py√
2π

)
eij, π > πb

2
(

µp +
py√
2π

)
eij, π > πb

(5)

where, τij is the(i, j)th components of the stress tensor, py is yield stress of the fluid, µp is the

dynamic viscosity for plastic non-Newtonian fluid, eij is the (i, j)th components of the deformation

rate for non-Newtonian fluid, πb is the critical value for deformation rate, π is the multiplication

of deformation rate with itself, and π = eijeij.

The governing equation for incompressible flow of couple stress fluid is given by:

ρ
D~V
Dt

= div T̃− η~∇4~V + ρf̃. (6)

Here ρ~f are the body forces. The mathematical expression for body forces can be expressed as:

ρf̃ = ~J × ~B + ~R + ρ~g, (7)

As no magnetic field is considered, therefor:

~J × ~B = 0. (8)

Substituting equation (8) in equation (7), we obtain:

ρf̃ = ~R + ρ~g, (9)
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The Cauchy stress tensor for incompressible non-Newtonian Casson fluid is:

T = −PI + µD. (10)

where, I, P, µ and D is identity tensor, and rate of strain tensor respectively.

The rate of strain tensor is mathematically define as:

D =
1
2
(J + Jt), (11)

where, the velocity gradient J and its transpose Jt is give below:

J =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 , Jt =


∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 . (12)

For velocity field defined in equation (3), the equation (11) can be written as:

J =


0 ∂u

∂y 0

0 0 0

0 0 0

 , Jt =


0 0 0
∂u
∂y 0 0

0 0 0

 . (13)

Substituting equation (13) in equation (11), we have:

D =
1
2


0 ∂u

∂y 0
∂u
∂y 0 0

0 0 0

 . (14)

Also the identity tensor in matrix notation is given by:

I =


1 0 0

0 1 0

0 0 1

 , then pI =


p 0 0

0 p 0

0 0 p

 . (15)

Now, substituting equations (14) and (15) in equation (10), we have:

T =


−p µ

2
∂u
∂y 0

µ
2

∂u
∂y −p 0

0 0 −p

 . (16)

The divergence of Cauchy stress tensor give in equation (16) is stated as:

~∇.T =


− ∂p

∂x + µ
2

∂2u
∂y2

− ∂p
∂y

− ∂p
∂z

 . (17)
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As the flow is in x direction, therefore ∂p
∂y and ∂p

∂y both are zero. The equation (17) reduce to:

~∇.T =

(
−∂p

∂x
+

µ

2
∂2u
∂y2

)
i. (18)

The pressure is given by:

p = pd + ph. (19)

Here, pd and ph indicates dynamic and hydrostatic pressures respectively. As in free convection,

the fluid flow is due to only hydrostatic pressure. Thus, for constant density, we have:

∂p
∂x

=
∂pd
∂x

= −ρ∞g, (20)

where ρ∞ is the ambient density of the fluid.

Substituting eqauation (??) into eqauation (??), we have:

~∇.T =

(
ρ∞g +

µ

2
∂2u
∂y2

)
i. (21)

Incorporating equations (9) and ((21)) into equation (6) and using the velocity profile define in

equation (3); we have:

ρ
∂u
∂t

=
µ

2
∂2u
∂y2 + ρ∞g− η

∂4u
∂y4 + ~R + ρ~g. (22)

Considering equation (5) for Casson fluid, the momentum equation for the flow ca be written as:

ρ
∂u
∂t

=

(
µp +

py√
2π

)
∂2u
∂y2 + ρ∞g− η

∂4u
∂y4 + ~R + ρ~g. (23)

Equation (23) can be written as:

ρ
∂u
∂t

= µp

(
1 +

1
β

)
∂2u
∂y2 + ρ∞g− η

∂4u
∂y4 + ~R + ρ~g, (24)

here β =
µp
√

2π
py

is the Casson parameter for the fluid.

The mathematical form of Darcy’s resistance for Casson fluid is R = µp

(
1 + 1

β

)
φ
k1

. In addition,

the gravitational acceleration is to the flow of fluid. Therefor equation (24) can be written as:

ρ
∂u
∂t

= µp

(
1 +

1
β

)
∂2u
∂y2 − η

∂4u
∂y4 + µp

(
1 +

1
β

)
φ

k1
u +~g(ρ∞ − ρ). (25)

Equation (25) can be written in more simple form as:

ρ
∂u
∂t

= µ

(
1 +

1
β

)
∂2u
∂y2 − η

∂4u
∂y4 + µ

(
1 +

1
β

)
φ

k1
u +~g(ρ∞ − ρ). (26)

Joseph Valentin Boussinesq (1842− 1929) developed the Boussinesq approximation. This approxi-

mation states that "Variation in density is only important in buoyancy term i.e ρg and in the rest
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of equation it can be ignored".

For pure substance (materials free of impurities), the density ρ can be expressed as:

ρ = ρ(p, T, C). (27)

Where p, T, and C indicates the pressure, temperature and concentration respectively.

Taking total differential of equation (27); we have:

dρ =
∂ρ

∂p
dp +

∂ρ

∂T
dT +

∂ρ

∂C
dC. (28)

Which can be expressed as:

dρ = KTρdp− βTρdT + KCρdp− βCρdC, (29)

where, KT and KC indicates temperature and concentration compressibility with uniform tempera-

ture and concentration respectively.

The expression for thermal coefficient βT at constant temperature are given by:

KT =
1
ρ

(
∂ρ

∂p

)
≈ 1

ρ

(
∆ρ

∆p

)
. (30)

The above equation can be written as:

∆ρ = KTρ∆p. (31)

Similarly;

βT = −1
ρ

(
∂ρ

∂p

)
≈ −1

ρ

(
∆ρ

∆p

)
, (32)

The above equation can be written as:

∆ρ = −βTρ∆p (33)

The concentration expansion βC at constant temperature is:

KC =
1
ρ

(
∂ρ

∂p

)
≈ 1

ρ

(
∆ρ

∆p

)
. (34)

The above equation can be written as:

∆ρ = KCρ∆p. (35)

Similarly;

βC = −1
ρ

(
∂ρ

∂p

)
≈ −1

ρ

(
∆ρ

∆p

)
, (36)
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The above equation can be written as:

∆ρ = −βCρ∆p. (37)

In free convection flow, thermal and mass compressibility have constant temperature and concen-

tration. Thus, the effect of KT and KT can be ignored in equation (29); we can write:

dρ = −βTρdT − βCρdC, (38)

which can be expressed as:

ρ∞ − ρ = −βTρ(T∞ − T)− βCρ(C∞ − C). (39)

The above equation can be written as:

ρ∞ − ρ = βTρ(T − T∞) + βCρ(C− C∞). (40)

Incorporating equation (40) in equation (26); we have:

ρ
∂u
∂t

= µ

(
1 +

1
β

)
∂2u
∂y2 − η

∂4u
∂y4 + µ

(
1 +

1
β

)
φ

k1
u + βTρ~g(T − T∞) + βCρ~g(C− C∞) (41)
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