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1. Supplementary Tables and Videos 

 

Supplementary Video S1: Maximum principal strain (%) distribution in the four models 

throughout the last cardiac 

 

Table S1: Comparison of the circulatory system parameters. 
 

Case 1 Case 2 
 

Normal HFpEF Normal HFpEF 

Aortic valve resistance 1 4 2 3 

Systemic resistance 8 160 18 160 

Venous resistance 132 100 75 55 

 

2. Additional details for “Klotz” curve configuration 

The “Klotz” curve can be configured using a single known scaling point to analytically predict 

the end-diastolic pressure-volume relations, as suggested in the original paper of Klotz et al. 

(2006). Volumes at the pressure of 0 mmHg (𝑉0) and 30 mmHg (𝑉30), are computed from the 

scaling point: 

𝑉0 = 𝑉𝑚(0.6 − 0.006𝑃𝑚)         ;         𝑉30 = 𝑉0 +
𝑉𝑚 − 𝑉0

0.302𝑃𝑚
0.358 

where 𝑉𝑚, 𝑃𝑚 are the volume and pressure of the scaling point. The resultant 𝑉30 can then be used 

to calculate the coefficients α and β: 

𝛼 =  30 𝑉30
𝛽                      ⁄ ;             𝛽 =  

log (𝑃𝑚 30)⁄

log (𝑉𝑚 𝑉30)⁄
 

Finally, the entire end-diastolic pressure volume relation can be expressed as 𝑃 =  𝛼𝑉𝛽. 

 

3. Additional details for active contraction 

The constitutive equations of the active stress are (Guccione et al., 2001): 

𝜎𝑎𝑓(𝑡,𝐸𝑓𝑓) =  
𝑇𝑚𝑎𝑥
2
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        ;         𝑡𝑟 = 𝑚𝑙 + 𝑏 

 

where Tmax is the isometric tension of the largest sarcomere length with the highest calcium 

concentration multiplied by a calcium concentration determining term and a contraction timing 

governing term, both of which are dependent on sarcomere length l. The timing of contractile 

function corresponds with the heart rate and timing of the cardiac cycle, which is imposed by a 

time (t) dependent modulus function.  

For calibration purposes, a consistent alteration in contractility was facilitated by altering the 

Tmax, changing simultaneously both the total contractile force of the tissue as well as the 

aforementioned parameters related to active behavior. 

The model was initialized with the passive material properties previously calibrated. Then, 

the active calibration followed methods from previous studies (Genet et al., 2014; Guccione and 

McCulloch, 1993; Sack et al., 2016). The pressure in the LV was raised to EDP, increasing the LV 

volume more than the EDV that was used for the calibration of the passive calibration. Next, the 

active tension was elevated to enforce systolic contraction and thereby reducing LV volume. The 

Tmax, which governs the systolic contraction, was scaled iteratively using a gradient descent 

algorithm to match the end-systolic volume obtained from the simulation to the animal study 

measurement. 
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