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Table S1. Parameters for spike-sorting (Kilosort2)

Parameters value
ops.fs 20000
ops.fshigh 150
ops.minfr_goodchannels 0
ops.Th [10 4]
ops.lam 10
ops.AUCsplit 0.9
ops.minFR 1/50
ops.momentum [20 400]
ops.sigmaMask 30
ops.ThPre 8
ops.spkTh -6
ops.reorder I
ops.nskip 25
ops.nfilt_factor 4
ops.ntbuff 64
ops.NT 4*64*1024+ ops.ntbuff
ops.whiteningRange 32
ops.nSkipCov 25
ops.scaleproc 200
ops.nPCs 3
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Table S2. Silhouette score for different number of clusters

Number of | Main Test
clusters (k) | dataset | dataset
2 0.601 | 0.585
3 0.617 | 0.432
4 0.472 | 0.439
5 0.502 | 0.434
6 0.498 | 0.438
7 0.491 | 0.452
8 0474 | 0.464
9 0.475 | 0.447
10 0.482 | 0.453
11 0.466 | 0.446
12 0.421 | 0.430
Table S3. Grid search parameters for random forest regressor
Parameters Range
Number of trees in models | np.linspace(start = 100, stop = 1000, num = 10)
Number of features used ‘sqrt’, ‘all’
Required number of samples
for splitting 2,4,6,8,10
Required number of samples
for each node 1,2,3,4,5
Table S4. Grid search parameters for GNN models
Parameters Range
dropout probability 0.1,0.2,0.3,04

learning rates (ADAM) 0.001, 0.005, 0.01

12 regularization (ADAM) 0.0001, 0.001, 0.01
number of hidden dimensions 8,16, 32
epoch [1, 1000]
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Table S5. Average shortest paths The table shows average shortest path lengths for each network along with the number of neurons considered for the

training/testing of GNN models. For directed graphs, average shortest paths for different y values are presented.

CCH CCH CCH CCH CCH
N ] amt695) | 69y | =0 | =05 | =D | =15 | (=2
- - (n =1616) | (n = 1509 | (n = 1290) | (n = 1070) | (n = 795)
0 1.528 1.461 2.062 2.863 3.151 1.212 1.043
1 1.563 1.495 2.317 2.413 2.959 2.592 3.172
2 2.100 1.851 1.883 2.452 2.337 2.603 2.505
3 3.083 2.564 1.658 1.803 1.928 2.283 2.576
4 1.322 1.249 2.533 2.483 3.037 3.456 1.991
5 1.594 1.425 2.33 3.484 2.540 1.73 1.172
6 1.275 1.156 2.369 2.936 3.614 2.764 1.993
7 1.479 1.383 2.129 2.719 3.012 3.546 3.372
8 1.511 1.422 2.357 3.41 3.048 2.443 2.093
9 1.426 1.262 2.205 2.629 2.999 3.32 2.446
10 1.850 1.691 1.852 2.157 2.590 3.276 3.307
11 2.059 1.882 1.975 2.349 2.806 2.742 2.606
12 1.825 1.662 1.894 2.146 2.583 2.953 3.771
13 1.606 1.442 2.565 2.941 1.591 1.212 1.147
14 1.786 1.598 2.394 2.891 3.251 2.062 2.11
15 1.908 1.695 2.111 2.867 3.540 3.499 3.256
16 1.793 1.591 2.188 3.042 2.991 2.696 2.485
17 1.884 1.676 2.035 2.522 2.798 2.752 2.851
18 2.146 1.881 1.999 2.476 3.124 3.83 5.466
19 1.658 1.511 2.057 2.791 2.995 2.427 2.69
20 1.509 1.347 2.402 2.437 3.141 2.144 2.144
21 2.217 1.832 2.003 2.445 2.799 2.89 3.08
22 1.634 1.383 2.496 3.104 2.053 1.636 1.4
23 1.609 1.365 2.07 2.313 1.921 1.887 2.139
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Table S6. Average MSE (n=1695, undirected FC)

Models Task 1. Immediate response | Task 2. Maximum response
Baseline 1.083 1.069
Linear regression 1.091 1.099
Random forest regression 1.076 £ 0.001 1.091 = 0.001
&ffgg?ﬁg lsﬁncv) 1.019 £ 0.011 1.034 + 0.008
(gr;‘fggo‘ﬁgzsﬁ“g) 1.043 £ 0.020 1.033 £ 0.022
gj‘fggﬁﬁg%ﬁ% 1.038 + 0.021 1.056 + 0.018
(Ségghpsvoﬁfg_ léCTO{‘E) 1.065 + 0.011 1.074 + 0.005
(gézghsoﬁﬁf;ﬁ{‘é) 1.078 4 0.015 1.073 + 0.019
(ngghlfoﬁﬁf;ﬁ%) 1.077 + 0.012 1.057 + 0013
Gc(gf'T'é‘)’“V 1.110 + 0.040 1.089 + 0.008
GC(IS‘%(C:C)’“V 1.102 + 0.027 1125 + 0.017
G(EIS‘I%(C:‘)’“" 1.098 + 0.031 1.168 + 0.037
(Gnrlzgh;ﬁﬁfg'lifgg 0.991 + 0.011 0.993 + 0.012
g;zghsggfg'zifgg 0.992 & 0.019 0.998 & 0.018
(Cr’;zghsgﬁf;ifgg 1.006 + 0.026 1.048 + 0.037
gjffiégfl; 'lﬁg‘g) 1.061 + 0.007 1.100 + 0.031
&:ﬂi?ﬁi}g‘g}lﬁg& 1.036 £ 0.016 1.039 £ 0.013
(mean pooling, PCO) 1079 + 0,022 1,041 + 0,014
GC(I}I;CI'CC)"“" 1.116 + 0.040 1.102 + 0.017
GC(I}I;(%'C")"“" 1.084 + 0.027 1112 + 0.025
GC(I}’;g'CC)O“" 1112+ 0.032 1.177 + 0.080
GraphSAGE-1-conv
(max pooling, 1.082 £+ 0.009 1.103 £ 0.016
Random sampled)
GraphSAGE-1-conv
(max pooling, PCC 1.068 + 0.006 1.101 £ 0.016
shuffled )
GraphSAGE-I-conv
(max pooling, PCC 1.062 == 0.007 1.062 £ 0.014
shuffled deg. preserved)
GraphSAGE-1-conv
(max pooling, PCC 1.058 + 0.005 1.070 + 0.007
min. spanning tree)

Table S7. Average MSE (v = 0, n=1616, directed FC)

Models Task 1. Immediate response

Baseline 1.09
RGCN-1-conv 1.083 £ 0.006
RGCN-2-conv 1.082 +£ 0.009
RGCN-3-conv 1.089 + 0.01

Table S8. Average MSE (v = 0.5, n=1509, directed FC)

Models Task 1. Immediate response

Baseline 1.123
RGCN-1-conv 1.127 + 0.01
RGCN-2-conv 1.167 = 0.022
RGCN-3-conv 1.151 £ 0.016
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Table S9. Average MSE (v = 1, n=1290, directed FC)

Models Task 1. Immediate response

Baseline 1.237
RGCN-1-conv 1.248 £0.01
RGCN-2-conv 1.232 £ 0.015
RGCN-3-conv 1.213 £ 0.021

Table S10. Average MSE (v = 1.5, n=1070, directed FC)

Models Task 1. Immediate response

Baseline 1.253
RGCN-1-conv 1.261 + 0.015
RGCN-2-conv 1.317 £0.023
RGCN-3-conv 1.326 £ 0.023

Table S11. Average MSE (y = 2, n=795, directed FC)

Table S12. Performance comparison (test dataset, average MSEs)

Models Task 1. Immediate response

Baseline 1.678
RGCN-1-conv 1.654 £ 0.015
RGCN-2-conv 1.826 £+ 0.031
RGCN-3-conv 1.7 £0.027

Prediction models FC type | Bicuculline (n=3164) | Gabazine (n=2755)
Baseline N/A 1.031 1.267
Linear regression N/A 1.018 1.260
Random forest regression | N/A 1.034 £ 0.001 1.261 + 0.001
GraphSAGE-I-conv PCC 0.999 = 0.002 1.268 £ 0.011
(max pooling)
GraphSAGE-2-conv PCC 0.985 -+ 0.006 1.257 4+ 0.004
(max pooling)
GraphSAGE-3-conv PCC 0.979 -+ 0.006 1.269 + 0.010
(max pooling)
GraphSAGE-1-conv PCC 0.992 + 0.004 1.262 + 0.004
(mean pooling)
GraphSAGE-2-conv. [ 0.994 + 0.004 1.287 + 0.021
(mean pooling)
GraphSAGE-3-conv PCC 1.006 4 0.011 1.279 4 0.039
(mean pooling)
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Figure S1. Generation of dense recording configurations (A) From the most active electrodes
(prioritizing firing rates, up to 1024 electrodes), (B) k-means centroids (k=4) were generated. (C) Four

dense-recording configurations were generated manually using the generated centroids as reference points
to include most active electrodes.
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Figure S2. Curve of inertia Based on these inertia value curves, we chose K=4 as it was the optimal
point where the intra-cluster distances between most active electrodes were small enough with a relatively

small number of clusters.
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Figure S3. Waveform features
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Figure S4. Firing pattern features

Frontiers



Supplementary Material
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Figure S5. R-square values of ACG fits Given the distribution of r-square values, neurons showing
r-square fits lower than 0.8 were discarded.
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Figure S6. Culture condition dependent factors For the average physical distance between neurons
and normalized PR values, we could not observe any significant correlation. Similarly, the image does not
show any significant correlation between the average physical distance between neurons and normalized
PR values.
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Figure S7. Distribution of the degree strength for each network The figure shows the degree strength distribution of each network. For all
networks, the degree strength measured in STTCs showed larger values than measured in PCC.
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task 1 : immediate response
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Figure S8. Distribution of MSE improvements for each network The figure shows MSE improvements
compared to the baseline model (blue line). Each data point in the violin plots corresponds to the MSE
improvement of a network.

10



sJanuoiy

Ll

Task 1. immediate responses

1.025 .

1.000

0.975

Za F . §+;*;ﬁ§é%é%@%

Average MSE
30 iterations)
o o
[} O
N u
w o

0.875

0.850

0.825 -

baseline lin_reg If_reg sage_L3_max sage L2_max sage L1 max sage_L3_mean sage_L2_mean sage Li_mean gen_L3) gen_L2 gen_L1 sage_L3_max sage_L2_max sage L1 _max sage L3_mean sage L2_mean sage L1_mean gen L3 gcn_L2 gen_L1
(PCC) (PCC) (PCC) (PCC) (PCC) (PCC) (PCC) (PCC) (PCC) (STTC) (STTC) (STTC) (STTC) (STTC) (STTC) (STTC) (STTC) (STTC)
Prediction models

Figure S9. Average MSE (task 1. immediate responses) Box-plot representation of Table S5. task 1.
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Figure S11. Loss curves for each network (task 1. immediate responses, GraphSAGE-1-conv, max
pooling (PCC)) Each subplot shows loss curves measured during MSE (training, testing data) for each
network. Subplots with red titles indicate networks that showed lower average MSEs than those of the
baseline model.
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Figure S12. Loss curves for each network (task 2. maximum responses, GraphSAGE-1-conv, max
pooling (PCC)) Each subplot shows loss curves measured during MSE (training, testing data) for each
network. Subplots with red titles indicate networks that showed lower average MSEs than those of the

baseline model.
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Figure S13. Target firing rate fold-change(A ;) vs MSEs (n=1695) Log-scaled. Neurons showing
negative A ¢,/ are not depicted.
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1 ASSESSING SPARSE FUNCTIONAL CONNECTIVITY

We implemented the maximum entropy model (MEM) using Minimum Probability Flow (MPF) (Sohl{
Dickstein et al., 2011). While using default parameters stated in the “allbitflipextension” model|'| we tested
3 different bin sizes (5, 10, 20 ms) to generate binary spike trains. This bin size selection was motivated by
the previous study by Das and Fiete| (2020). The estimated functional connectivity (coupling matrix, J) was
L2-normalized and used for the downstream analysis.

We tested the performance of MEM functional connectivity using the main dataset (task 1. immediate
response). As shown in Table S13, none of the GraphSAGE implementations showed significant
improvement over the baseline (two-sided paired sample t-test, « = 0.01). We further tested different
variants including unnormalized graphs and graphs without negative weights (by discarding all negative
edges or subtracting the smallest edge weight from the graph). None of these variants resulted in improved
accuracy (data not shown).

To probe the usefulness of MEM further, we generated a functional connectivity graph linearly
interpolated between the Pearson correlation based graph and MEM based graph. Given that MEM
with 5 ms showed the best accuracy with GraphSAGE-3-conv (max pooling) among other MEM instances,
we selected functional connectivity derived from MEM with 5ms to mix it with Pearson correlation-
derived functional connectivity graph. We computed the prediction accuracy of the best-performing model
(GraphSAGE-1-conv, max pooling).

I URL: https://github.com/Sohl-Dickstein/Minimum-Probability-Flow-Learning/blob/master/MPF_ising/K_dK_|
ising_allbitflipextension.m
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Table S13. MSE of Maximum entropy models with different bin sizes The table shows MSEs of GraphSAGE models using Maximum entropy model-derived
functional connectivity. We generated binary spike trains using three different bin sizes(5, 10, 20ms)

(mean pooling, 20ms)

Models Task 1. Immediate response
Baseline 1.083
Linear regression 1.091
Random forest regression 1.076 + 0.001
?Ifghs(ﬁﬁfgl 'Scrcl’fs‘;’ 1.089 & 0.007
ﬁ;zgh;;‘}gﬁ;-;;gy 1.098 + 0.011
?Ifghs(ﬁﬁfg?’ 'Scrcl’fs‘;’ 1.074 £ 0.011
gﬁgﬁiﬁgﬁ;gﬁg 1.084 + 0.006
ggggiﬁgi;g%‘s‘; 1.104 + 0.01
(Grrfggr??oégi;g%lsv) 1.102 + 0.014
ggﬁ%i‘gﬁiligﬁlsv) 1.166 =+ 0.024
(angggiﬁﬁfg"zigﬁg 1.103 £ 0.016
(angggi‘gl?fg:3{8?r‘fsv) 1.126 + 0.017
(glreaaﬁ’lhs(ﬁ)ﬁg;'fg;‘l‘s’) 1.085 + 0.007
(ggzghggﬁﬁg-fgg) 1.096 + 0.011
(Sfeaaﬁ’lhsg%f; 'f(%‘l‘s’) 1.121 + 0.017
g;gg%’;ﬁglégﬁs 1.082 + 0.003
ggﬁ%iﬁl?gzég?r‘g 1.099 + 0.007
(angggiﬁﬁg’?’égﬁs 1.1 4 0.011
(ggzghggﬁ‘;ﬁé};gg) 1.081 4 0.004
(Slreaaﬁ’lhs(ﬁggg';ggs’) 1.098 & 0.025
GraphSAGE-3-conv 1.084 + 0.008

In the following discussion, these acronyms and formula will be used:

PCC = Pearson correlation-derived functional connectivity

MEM = Maximum entropy model-derived functional connectivity

£ = mixing strength

Weighted FC = 3 *PCC + (1-5) *MEM
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Figure S15. MSE of GraphSAGE-1-conv with max pooling, using linearly interpolated functional
connectivity graphs. Each value of 3 yields a different graph.

With 5 = 0, we recover MEM. As shown in Figure S15, as we increase the proportion of PCC, we see an
improvement in terms of MSE (decrease in MSE).

To understand why networks inferred by the MEM approach did not yield more information, we analyzed
the edge weight distribution. Compared to PCC, MEM generated a lot of near-zero values. By clipping the
edge weights under 0.01 (i.e. by applying an absolute threshold) for both MEM and PCC, we see a clear
contrast in graph density between MEM and PCC for all 24 recordings (Figure S16 below).

We found that the MEM graphs were effectively sparse compared to the PCC graphs. This sparsity in the
graph might limit the expressivity of GNN models as only few edges can pass the information in the MEM
graphs.
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Figure S16. Comparison of clipped graph density between graphs derived using MEM and PCC. Each
point represents a recording (or a network) and it is plotted in the figure using the density of the PCC-
derived FC graph (as X-axis) and the density of the MEM-derived FC graph (as Y-axis). If both graphs had
the same density, then the point would be plotted over the diagonal.

2 CONNECTEDNESS IN DIRECTED FUNCTIONAL CONNECTIVITY GRAPHS

We probed the connection density of directed FC without discarding smaller graph components in order
to consider the same number of neurons as in undirected FC. Figure S17 shows the number of graph
components and graph densities against the applied sensitivity v for 24 recordings (or networks).
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Figure S17. (A) The number of disconnected graph components against the sensitivity parameter . (B)
Graph density against the sensitivity parameter 7.
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As v increases (higher threshold), we obtain graphs with lower connection density. We then compared
the density of PCC-derived FC against directed FC thresholded with the lowest threshold value (v = 0,
using the population mean across all edge weights (before thresholding) as a threshold. Refer to Figure S18

below. Graph density for undirected graphs was computed as Dypq = %, where | F| is the number

of edges and |V is the number of nodes in the graph. Graph density for directed graphs was computed as

(?dir = % We additionally converted the directed FC graphs into undirected graphs and compared
ensities.

1.0 CCH(und)
CCH(dir)

o o o
B o o

Density(CCH)
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Density(PCC)

Figure S18. Comparison of graph density between directed functional connectivity (v = 0) and PCC-
derived FC. Each point represents a recording and it is plotted in the figure using the density of the
PCC-derived FC graph (as X-axis) and the density of the CCH-derived FC graph with v = 0 (as Y-axis).
“CCH(und)” represents the density of directed FC graphs when converted into undirected graphs and
“CCH(dir)” shows the true density of the directed FC graphs.

Figure S18 shows that the connection density of directed connectivity (CCH) was lower compared to

the connection density of Pearson correlation (PCC) when comparing graphs of the same size (i.e., same
number of neurons).
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