
	Supplementary Table 1. Clinical profiles of patients with cholesteatoma included in this study

	ID
	Tissue
Type
	Ethnicity
	Age
(yrs)
	Otoscopic Findings
	CT Findings
	Intraoperative Findings

	1
	Chol
	Hispanic
	9.6
	Left TM is retracted, whitish mass behind eardrum, malleus remnant visualized

	· Near complete opacification of left EAC and middle ear cavity
· Complete opacification of left mastoid
· Blunting of the scutum and demineralized appearance of the ossicles suggests underlying cholesteatoma
	· Chorda tympani preserved but stretched
· Ossicular chain intact and mobile
· Anterior TM atelectatic to promontory, posterior TM retraction pocket posteriorly and into sinus tympani with small cholesteatoma in posterior mesotympanum and sinus tympani. No epitympanic or mastoid extent, however likely not aerated due to atelectatic drum and retraction pocket. Mastoidectomy not indicated

	2
	Mucosa
	White
	19.3
	· Right TM is intact with grafted cartilage
· Left with posterior mesotympanic retraction pocket (Sade grade 4)
	NA
	· Recurrent pearl of cholesteatoma underneath the neck of the malleus, going up to the epitympanum.  
· No facial nerve abnormalities, dehiscence, stimulation, or aberrant course.  Chorda tympani nerve was not present.  Incus and malleus were not present

	3
	Mucosa
	White
	20
	· Right TM is intact with no inflammation, retraction or perforation noted. Right middle ear is normal; no fluid or cholesteatoma noted. 
· Left TM with attic retraction and crusting. Left middle ear with white mass causing bulging of the TM posteriorly
	· Left middle ear mass involving epitympanum and mastoid antrum- compatible with cholesteatoma
· No labyrinthine erosion noted
	· Extensive middle ear mastoid cholesteatoma. 
· The cholesteatoma filled the entire middle ear space, at the tympanic spaces, mastoid antrum, and facial recess. 
· The cholesteatoma extended into the petrosal portion of the temporal bone in the area of the geniculate ganglion and medial to the ampulla of the superior semicircular canal. 
· Gross total tumor removal was accomplished taking extended operative time.

	4
	Chol
	White
	61.4
	· Right TM has an area of debris going under the scutum into Prussak's space; otherwise there is normal mobility; no inflammation, retraction or perforation noted. Right middle ear is normal; no fluid or cholesteatoma noted. 
· Left TM has normal mobility; no inflammation, retraction or perforation noted. Left middle ear is normal; no fluid or cholesteatoma noted. 
	Cholesteatoma in Prussak's space with no extension into mastoid antrum
	· Cholesteatoma present in epitympanum
· No erosion of ossicles

	5



	Chol



	White



	66.4



	· Right TM has normal mobility; no inflammation, has retraction under the scutum noted. Right middle ear is normal; no fluid or cholesteatoma noted.
· Left TM has normal mobility; no inflammation, retraction or perforation noted. Left middle ear is normal; no fluid or cholesteatoma noted. 
	· Right EAC soft tissue alongside retracted and thickened TM with lateral epitympanic soft tissue and associated partial osseous erosions of the scutum and ossicles as above
· Findings most suspicious for cholesteatoma
	· Left TM is retracted but stable
· Keratinaceous debris consistent with cholesteatoma within a deep posterosuperior retraction pocket. There was extension laterally into the EAC deep to the mucosa but without significant bony destruction  
· Prior cartilage graft involved in cholesteatoma
· Malleus, incus interposition graft, and stapes present, but not in continuity. No cholesteatoma involvement of the ossicles

	6
	Mucosa
	White
	77.3
	· Right TM is intact with no inflammation, retraction or perforation noted. Right middle ear is normal; no fluid or cholesteatoma noted
· Left TM has a posterior TM perforation with keratin debris tracking in the undersurface of the TM.  The TM is thicker than normal and opaque so unclear the extent of cholesteatoma. Left middle ear could not be assessed
	Soft tissue within the left middle ear with possible erosion of the stapes crura, which could represent granulation tissue or cholesteatoma
	· Small posterior superior quadrant perforation with extensive cholesteatosis of the middle ear
· Cholesteatoma tracked to involve the undersurface of the entire eardrum as well as to make deposits within the middle ear space.  There was no encapsulated cyst
· Ossicular chain was found to be intact
· No cholesteatoma found within the mastoid antrum or epitympanum

	Chol: cholesteatoma; CT: computed tomography; EAC: external auditory canal; TM: tympanic membrane. All six recruited patients are male.






	Supplementary Table 2. Pathways from network analysis that overlapped between Baschal et al. 2020 and this study

	Pathway
	FDR-adj-p*

	Endocytosis
	2.96x10-17

	Protein transport
	1.92x10-6

	Vesicle-mediated transport
	7.72x10-5

	Viral process
	0.0003

	Regulation of catalytic activity
	0.0008

	Regulation of cell cycle
	0.006

	Negative regulation of apoptotic process
	0.01

	Apoptotic process
	0.03

	Rhythmic process
	0.044

	Cell cycle
	0.08

	Phagocytosis
	0.09

	Cell proliferation
	0.13

	Cytoskeleton organization
	0.14

	Circadian rhythm
	0.18

	Blood coagulation
	0.18

	Transcription by RNA polymerase II
	0.18

	Protein phosphorylation
	0.34

	*These FDR-adjusted p-values are based on module analysis of the subnetwork created when including 8 out of the 12 candidate genes from this study as seeds in NetworkAnalyst. 






























	Supplementary Table 3. RNA and protein expression profiles in various human tissues

	Gene
 
	Tissue with highest RNA expression1
GTEx Consortium
	Protein expression
Human Protein Atlas
	Function
PubMed

	APBB1IP
	Whole blood, EBV-transformed lymphocytes, spleen, adipose tissues
	Cerebellum, testis, appendix, spleen, lymph node
	In hematopoietic cells, involved in phagocytosis, including particle recognition, cytoskeletal remodeling and membrane protrusion for engulfment and digestion (Sari-Ak et al., 2022). Knockout mice have IL-10 deficiency but are protected from autoimmune colitis and have preserved Treg cell trafficking and function (Sun et al., 2021)

	ARID3A
	EBV-transformed lymphocytes, testis, whole blood, cultured fibroblasts, spleen
	Placenta, testis, tonsil, cerebral cortex, thyroid gland
	TLR signaling induces ARID3A expression in hematopoietic progenitors in association with Type I interferon inflammatory cytokines (Ratliff et al., 2020). Both transcription factors ARID3A and BHLHE41 regulate the development of innate-like B-1a lymphocytes (Kreslavsky et al., 2018). Transgenic mice with dominant-negative Bright/Arid3a had decreased serum IgM, B1 B cells that were functionally deficient in Ig secretion, and poor anti-phosphorylcholine responses which confer protection against S. pneumoniae (Nixon et al., 2008)

	BHLHE41
	Brain, thyroid
	NA
	See note from Kreslavasky et al. 2018 above. With knockdown of Bhlhe41, B-1a cells were reduced. Mutant B-1a cells had abnormal cell surface and altered B cell receptor repertoire (Kreslavsky et al., 2017). Also Bhlhe41 and Bhlhe40 regulate self-renewal of alveolar macrophages (Rauschmeier et al., 2019)

	C5AR1
	Whole blood, pituitary, lung, spleen, aorta
	Spleen, bone marrow, cerebral cortex, adrenal gland, lung
	C5AR modulates TLR4 signaling in macrophages, restraining inflammatory responses to localized infections (Seow et al., 2013). Crosstalk between C5AR and other innate immune receptors increases the proinflammatory response, esp. with pneumococcal induction (van der Maten et al., 2016). C5ar1 deficiency in mice attenuated the IL-1ß response of monocytes and macrophages to LPS challenge (Haggadone et al., 2016), decreased IL-10 production and increased IFN-gamma (Sommerfeld et al., 2021). C5ar1-null mice had increased capacity to clear P. gingivalis but recruited lower numbers of neutrophils (Maekawa et al., 2014). Similarly C5ar1-deficient mice had enhanced clearance of S. pneumoniae and reduced severity of acute pneumococcal otitis media after influenza viral infection (Tong et al., 2014)

	CPT1B
	Testes, heart, skeletal muscle, brain
	Parathyroid gland, testis, heart muscle, skeletal muscle, kidney
	CPT1B is a rate-controlling enzyme of long chain fatty acid beta-oxidation pathway in muscle mitochondria. CPT1B was upregulated in neonatal sepsis (Misheva et al., 2022). On the other hand, Cpt1b was reduced in myocardium after LPS induction (Tzanavari et al., 2016)

	CRYBG1
	NA
	Parathyroid gland, nasopharynx, bronchus, lung, salivary gland
	Possible role in promoting carbohydrate binding activity. CRYBG1/AIM1 is mutated or methylated in cell lines from extranodal natural killer-T-cell lymphoma (Sako et al., 2014)

	FAM227A
	Testes, pituitary, thyroid, fallopian tube, cervix
	NA
	NA

	HEPHL1
	Esophagus, vagina, testes, skin
	NA
	Enables ferroxidase activity for cellular iron ion homeostasis. Involved as a hub gene in SARS-COV-2 infection (Karami et al., 2021) and upregulated in cutaneous squamous cell carcinoma (Zou et al., 2021) 

	RAB5A
	Cervical spinal cord, fibroblasts, artery, skin, lung
	Thyroid gland, parathyroid gland, adrenal gland, stomach, duodenum
	Overexpression of active or dominant-negative mutants of RAB5A in macrophages increased phagocytosis of E. coli bacteria and cell apoptosis (Frankenberg et al., 2008). Rab5a was upregulated in airway epithelial cells during early RSV infection while Rab5-knockdown or downregulation reduced lung pathology and disease severity of RSV infection and increased IFN-lambda production (Mo et al., 2021)

	RGS22
	Testes, ovaries, fallopian tube, uterus, cervix
	NA
	Promotes G-protein binding activity; involved in negative regulation of signal transduction. Expressed in several cancers of epithelial origin (Hu et al., 2011)

	RTN4
	Fibroblasts, brain tissue, adipose tissue
	Cerebellum, caudate, testis, cerebral cortex, hippocampus, soft tissue
	Downregulated in epithelia from human and experimental inflammatory bowel disease (Rodriguez-Feo et al., 2015). RTN4/NOGO-B overexpression in nasopharyngeal carcinoma increased migration, invasion, and metastatic ability of cancer cells and upregulated p-RhoA, SRF and MRTFA (Wang et al., 2022). RTN4-B deficiency attenuated proinflammatory cytokine production and resulted in impaired TLR9 localization in endolysosomes (Kimura et al., 2015) and impaired transmigration of neutrophils in vascular endothelium (Di Lorenzo et al., 2011)

	SPTLC3
	Skin, thyroid, tibial nerve, kidney
	Nasopharynx, bronchus, stomach, colon, gallbladder
	Upregulated with progressive diabetes in rats (Piccolo et al., 2021), but downregulated in sebum specimens of children with atopic dermatitis (Shima et al., 2022)

	1All 12 genes were expressed in esophageal mucosa, lungs, cervix, uterus, vagina, minor salivary glands, and skin tissues as a potential surrogate for middle ear mucosa. Tissues with highest expression of candidate genes are listed. 
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