
Supplementary Material 

1 Supplementary Methods 

1.1 Participants and recruitment 

Participants with severe AD, and healthy non-demented older control participants were recruited from 

memory services in Camden and Islington NHS Foundation Trust and using the national NIHR Join 

Dementia Research platform.  For participants with AD, pre-existing diagnoses were previously made by 

NHS services according to ICD-10 diagnostic criteria (WHO, 2016), following multidisciplinary 

assessment.  Patients were eligible for inclusion if they had a diagnosis of F00.1

(Dementia in Alzheimer disease with late onset) or F00.2 (Dementia in Alzheimer disease, atypical or 

mixed type), as pathologically, mixed AD neurodegeneration and cerebrovascular disease remain 

common in people with clinically diagnosed AD (Arvanitakis et al., 2019). As a definitive diagnosis of 

Alzheimer’s disease remains a post-mortem diagnosis, the participants were diagnosed as

‘probable’ AD following standard clinical assessment, and severity of dementia was defined using 

established cut-off scores on the standardised mini mental state examination (sMMSE): severe (< 10)

(Folstein et al., 1975), Clinical dementia rating scale (Morris, 1997) and Global Deterioration Scale 

(Reisberg et al., 1982) Exclusion criteria included any concurrent medical condition, psychiatric illness or 

medication that may interfere with awareness and a history of epilepsy or metallic implants would 

contraindicate the person’s ability to undergo the TMS-EEG or fMRI, component of the study. As 

participants with severe AD lacked capacity to consent, strict procedures for recruitment and consent of 

patients unable to provide informed consent were followed (HRA, 2017), and personal consultees were 

identified and provided a declaration that the person would wish to take part in the study.  The study was 

approved by the Wales 3 NHS ethics committee.  Of note, the same older
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control participants were used in both the TMS-EEG and ERP experiments.  Two patients with 

severe AD had both TMS-EEG and ERP data collected, whilst one patient only had TMS-EEG data 

collected.  Two different healthy older controls and one different severe AD patient took part in the 

fMRI experiment.  Please see Table 1 for demographic information of all participants.  In addition, 

the three severe AD patients who had TMS-EEG data had been diagnosed with probable AD 10 

years, 8 years and 4 years prior to the study.  The severe AD patient who took part in the fMRI study 

was diagnosed with probable AD 10 years prior to the study, with repeat neuroimaging 1 year prior 

to the study suggesting additional cerebrovascular disease leading to a revised diagnosis of F00.2: 

Dementia in Alzheimer disease, atypical or mixed type.  

1.2 Experiment 1 TMS-EEG 

1.2.1 Data Acquisition: Participants were sitting in a comfortable chair, in a quiet room, resting their 

forearms on a pillow placed on their lap. They were asked to fixate on a point on the computer 

screen, in order to reduce eye movements during the EEG recordings.  Participants wore headphones, 

which continuously played a masking noise, composed of white noise mixed with specific time 

varying frequencies of the TMS click, to minimize auditory evoked potentials. To enhance the 

masking, subjects also wore ear defenders (SNR = 30) on top of the earplugs. The intensity of the 

masking noise was adjusted for each participant by increasing the volume (always below 151 dB) 

until the participant was sure that s/he could no longer hear the TMS click (Rocchi et al., 2021).  

Single-pulse, monophasic TMS was delivered using a Magstim 2002 device connected to a 70-mm 

figure-of-eight coil held with the handle backwards at 45 degrees to the midline, inducing current in 

the posterior-anterior direction (Magstim Company Limited, Whitland, UK).  Resting motor 

threshold (RMT) was calculated as the lowest stimulation intensity that produced a motor evoked 

potential of at least 50 μV in 5 out of 10 consecutive trials in the relaxed first dorsal interosseous 
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muscle. When using the standard coil, the stimulation intensity was set at 120% RMT.  EEG was 

recorded using a DC-coupled, TMS-compatible amplifier (Actichamp, Brain Products, GmbH). 

Signal was recorded from 63 active electrodes mounted on a cap (actiCAP), in accordance with the 

international 10-10 system, including: Fp1, Fz, F3, F7, FT9,  FC5, FC1, C3, T7, TP9, CP5, CP1, Pz, 

P3, P7, O1, FCz, O2, P4, P8, TP10, CP6, CP2, Cz, C4, T8, FT10, FC6, FC2, F4, F8, Fp2, AF7, AF3, 

AFz, F1, F5, FT7, FC3, C1, C5, TP7, CP3, P1, P5, PO7,  PO3, POz, PO4, PO8, P6, P2, CPz, CP4, 

TP8, C6, C2, FC4, FT8, F6, AF8, AF4, F2. Recordings were online referenced to Oz and the ground 

electrode was placed on Fpz. In the offline analysis, an average reference was used. Skin impedances 

were kept below 5 kΩ and the sampling frequency during recording was 5000 Hz.   Additionally, 

when the coil was in direct contact with the EEG cap, a 0.5 cm foam layer was placed underneath the 

coil to minimise bone conduction of the TMS click and scalp sensation caused by coil vibration. 

1.2.2 Data analysis, Preprocessing: Offline EEG pre-processing was performed with EEGLAB 

14.1.1 with additional functions included in the TMS-EEG Signal Analyser (TESA) toolbox 

(Rogasch et al., 2017), using MATLAB (version 2020a). EEG signal was epoched (-1.3 to 1.3s) and 

demeaned using a baseline from -1000 to -10ms. Channels that exceeded a kurtosis threshold were 

considered faulty and excluded from further analysis. Next, inspired by the Autoreject method, peak-

to-peak amplitudes for each channel and epoch were computed (excluding 20ms around the TMS 

pulse), and epochs with either multiple channels exceeding a soft threshold, or at least one channel 

exceeding a hard threshold, were rejected. Finally, all channels were linearly detrended using the 

slope estimated from the 50 to 500ms range post-TMS. 

With bad channels and epochs removed, the remaining artefacts were cleaned using an adapted 

version of the SOUND-SSPSIR pipeline available in the TESA toolbox, which we describe here in 

brief. First, the TMS pulse was removed from -5 to 2ms around the trigger and interpolated by means 
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of a cubic function. Independent component analysis was then run using the FastICA algorithm to 

remove blink and movement artefacts, and the remaining artefacts were removed using the SOUND 

(Mutanen et al., 2018) and SSP-SIR (Biabani et al., 2019) algorithms. Lastly, data was band-pass 

filtered between 0.1 and 45Hz with a fourth-order Butterworth filter, resampled at 362.5Hz and 

rereferenced to the common average reference. 

 

1.2.3 PCI calculation: We computed PCIST using publicly available open-source code by Comolatti 

et al (2019), which we describe here in brief (Comolatti et al., 2019). First, data from all artefact-free 

trials is averaged to obtain the TMS-evoked potential (TEP) in all channels. Then, the principal 

components (PCs) of the TEP are obtained, and for each PC a pairwise distance matrix is obtained 

for the baseline (-200 to –50ms) and response (0 to 300ms) time ranges. These matrices are 

thresholded to obtain the number of state transitions in the signal, and the optimal threshold is 

selected as that which maximises the difference in state transitions between response and baseline. 

Finally, the process is repeated for each PC and the resulting number of state transitions are summed 

across PCs to yield the final PCIST. For more details on the computation of PCIST please see the 

original publication (Comolatti et al., 2019).  

 

1.3 Experiment 2: Event related potentials 

1.3.1 Data acquisition: A visual masking paradigm was adapted from a study of visual awareness in 

infants (Kouider et al., 2013). A series of black and white pictures, either faces or masks, were 

presented at either 33ms or 200ms duration.  The target face or mask were presented between a series 

of masks in 10 pseudo-random blocks of 20 trials (5 trials of 4 trial types).  Participants were 

positioned 30cm from a computer screen on which the stimuli were presented and monitored to 
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ensure their eyes were open and gaze was focused on the screen during the task.  ERPs were recorded 

using the same 63 active electrode EEG system as in the TMS experiment.   

1.3.2 Data analysis: Offline EEG pre-processing was performed with EEGLAB 14.1.1, running 

using MATLAB (version 2018b).  EEG signal was epoched (-1.7 to 1.7s) using a baseline from -

1200 to -400ms, in order to avoid considering the EEG response to the fixation mask as baseline. A 

band-pass (1-100Hz) and band stop (48-52Hz) filter was applied and the signal was further epoched 

(-1 to 1s) to reduce possible edge artefacts. Epochs were then visually inspected and those with 

excessively noisy EEG were excluded. Independent component decomposition analysis was run, 

using a fastICA algorithm, and components were plotted in a time window ranging from -500 to 

1000ms. Those representing artefacts (eyeblinks, continuous muscle activity etc) were removed.  

Lastly, EEG signals were rereferenced to the common average reference. In line with Kouider et al 

2013 we examined eight occipito-parietal electrodes (O2-Oz-O1-POz-PO3-PO4-PO8-PO7) to 

identify ERP components associated with face perception.  We averaged the voltage across the 

considered cluster of electrodes and plotted amplitude vs time (sec). Due to the small number of 

participants in this pilot study, statistical analysis of the components was not conducted.  No 

conclusions can therefore be drawn however the amplitude vs time plots were produced to allow 

preliminary illustrative comparison between groups that requires validation with larger sample sizes 

in future experiments.   

1.4 Experiment 3: fMRI 

1.4.1 Data acquisition: The design was based on previous studies by Naci et al 2014 and 2017 (Naci 

et al., 2014, Naci et al., 2017).  An edited 8-min sequence of the black and white TV episode, “Alfred 

Hitchcock Presents - Bang! You’re Dead” was presented.  Participants were asked to simply watch 

the film, which was projected on to a screen behind their head, and they looked upward into a mirror 
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box that enabled them to see the screen.  An infrared camera placed inside the scanner was used to 

monitor the participants to ensure they maintained continuous eye opening during the movie.  Noise 

cancellation headphones were used to deliver sound delivery.  An anatomical volume was obtained 

using a T1 weighted 3D magnetization prepared rapid acquisition gradient echo (MPRAGE) 

sequence (32 channel coil, voxel size 1 x 1 x 1mm, TA = 5 min and 38s, TE=4.25ms, matrix size = 

240 x 256 x 192, FA = 9 degrees). During the movie, functional echo-planar images were acquired 

[48 slices, voxel size: 3 x 3 x 3, repetition time = 3360ms, matrix size = 64 x64, flip angle (FA) = 75 

degrees) 

1.4.2 Data analysis: Data were processed using automatic analysis (version 4.1) (Cusack et al., 

2014): a data processing and analysis pipeline that integrates commonly used routines from 

Statistical Parametric mapping (SPM12) with custom data processing modules written in MATLAB. 

Five ‘dummy’ scans were excluded from the beginning of every data set. Data were normalized to 

MNI space and smoothing was done with a Gaussian kernal of 10mm FWHM. The standard 

preprocessing steps were corrected for timing of slice acquisition, motion correction, normalization 

to a template brain, and smoothing.  Motion correction was done using six motion parameters (x,y,z, 

translation and rotation) and low-frequency noise (e.g., drift) was removed with a high-pass filter of 

128s. To further denoise the data, while maintaining the temporal integrity the data, cerebrospinal 

fluid, white matter signals, motion parameters, their lag-3 2nd-order volterra expansion, and “spikes” 

(based on mean signal variance across volumes) were used as nuisance regressors. The data were 

then further cleaned by running a group ICA (Calhoun et al., 2001) within each stimulus and 

removing 1-2 components that spatially correlated with a mask of the ventricles to remove non-brain 

related activity.  
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1.4.3 Data-driven analysis of fMRI time series:  a model of healthy brain function during movie 

viewing has been established in previous studies (Naci et al., 2014, Naci et al., 2017), demonstrating 

that individual components clustered into five spatially distinct brain networks: auditory, visual, 

frontoparietal, motor and precuneus.  To identify these components in study participants we 

performed group ICA, a method that derives spatially orthogonal components, whose spatial and 

temporal features are similar across subjects.  The GIFT software 

(https://trendscenter.org/software/gift/) was used to perform ICA with a 15-component cutoff.  The 

components corresponding to the networks of interest (visual, auditory, frontoparietal) were visually 

identified. 

Similar to the approach used by Naci et al 2014, the model of healthy brain function during the 

movie task, based on the stereotypical brain activity observed in healthy participants, could be used 

to compare brain function in individual patients.  Single-subject analyses were focused on three main 

networks, the auditory, visual and frontoparietal which are functionally critical for higher-order 

cognition during movie viewing. Each network’s time course (derived from the ICA of the healthy 

group) was then used as a regressor in the SPM data model of the patient.  The spatial similarities of 

the identified networks can be used to determine functional correspondence between the healthy 

controls, older adults, and AD patient. Slight differences in localization are expected not only due to 

differences in any given patient’s morphological organisation (e.g. widespread atrophy, enlarged 

ventricles etc) compared with controls but also due to the normal anatomical variation observed even 

among individual healthy participants. By comparing the time courses of activation in response to the 

film from each of the identified networks, homologous processes between the healthy controls, older 

adults, and AD patient, can be identified. 
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