
Mathematical Frameworks: 
 
1. DrugCell1 

 
Neural Network Configuration: 
 
Each subsystem in the hierarchy of subsystems in DrugCell, is assigned a number k of 
neurons to represent its multidimensional state. 
 
O(s) = f( W(s) . I(s) + b(s)) 
 
where: 
O(s) is subsystem state represented as a function of the states of its c child subsystems 
and g directly annotated genes. 
W(s) is a weight matrix of dimensions and k×(k∗c+g). 
b(s) is a weight vector of dimension k. 
W(s) and b(s) provide the parameters to be learned for subsystem s. 
I(s) is concatenation of of he states of c child subsystems and g directly annotated genes. 
f is a non-linear transformation based on hyperbolic tangent and batch normalization. 
 
Training of parameters is performed using: 
Loss function = mean-squared error 
Optimizer = SGD 
 

 
2. HiDRA2 

 
Neural Network Configuration: 
 
The attention module of gene-level network for calculating the importance of each gene: 
 

 
 
 

 

 
 
where: 
Ci is a concatenation vector of Gi and D, 
Wi is the weight of the attention layer in the gene-level network for pathway i, and, 
bi is the bias of the attention layer in the gene-level network for the pathway. 
 
The attention module of pathway-level network for calculating the importance of each 
pathway: 



 

 

 
 

 
where: 
Q is a concatenation vector of P = {p1, p2, ..., p186} and drug descriptor D, 
Wp is a weight of the attention layer in the pathway-level network, and 
bp is the bias of the attention layer in the pathway-level network. 
 

Training of parameters is performed using: 
Loss function = mean-squared error 
Optimizer = ADAM 
 
 
 

3. PathDNN3 
 
Neural Network Configuration: 
 
Pathway layer = First hidden layer (323 neurons)  
 
Connections between the input layer and the pathway layer = Associations between genes 
and pathways using 323*1278 mask matrix (M) 

In the back propagation process, the weights are iteratively updated using the rule as 
below: 

 
 
where: 
Wfeedback represents the feedback weights in the last backpropagation iteration, and 
Wmask represents the successive forward weight which asserts the sparsity of gene-
pathway association. 
 
The feed-forward process is iteratively calculated as below: 
 

 
 
where: 
Wn+1 is the weights between hidden layers Hn and Hn+1, bn+1 is the bias vector, and 
f is the activation function that performs nonlinear transformations. 
 



Training of parameters is performed using: 
Loss function = mean-squared error 
Optimizer = ADAM, SGD 
 
 

4. PaccMann4 
 

Network Propagation  

The propagation function: 

 

where: 
D is the degree matrix and 
Aʹ is the normalized adjacency matrix, obtained from the degree matrix D: 

 

 

Neural Network Configuration: 

 

Self-Attention (SA) 

The SMILES attention weights αi were computed as 

 

 

Contextual-Attention (CA) 

The contextual attention weights αi are computed as : 

 

 
Training of parameters is performed using: 
Loss function = mean-squared error 
Optimizer = ADAM 

 
 

5. consDeepSignaling5 
 
Neural Network Configuration: 
 



Input layer node vector : 
X= [x1,f1,x1,f2,…x1,fK,…,xi,fk…,xn,fK]   T ∈ ℝKn×1,   
where: 
K equals the number of features for each gene,  
n equals the number of genes, and 
xi, fk denotes the kth feature of ith gene.  
 
Gene layer node vector: 
G=(g1,g2,…,gi…,gn)∈ℝn×1 
where:  
n equals the number of genes 
gi denotes ith gene.  
 
Pathway layer is denoted by P=(p1,p2,…,pi,…,ps)∈ℝs×1,  
where s equals the number of signaling pathways. 
 
 
Feature connection matrix /mask matrix  CXG∈ℝKn×n : 
 

. 
 
 
Information passing from Input layer to Gene layer: 
(CXG ⋅WXG)TX = G 
 
 
Information passing from Gene layer to Pathway layer: 
(CGP⋅WGP)TG = P 
 
Training of parameters is performed using: 
Loss function = mean-squared error 
Optimizer = ADAM 
 
 

6. DEERS6 
 
Training of parameters is performed using: 
Loss function = 𝐽(𝑊𝑊) 

 
𝐽(𝑊𝑊) = MSE(𝐲−𝐲 ̂ )+𝑟𝐷⋅MSE(𝑋𝑋𝐷−𝑋𝑋ʹ𝐷) 
+𝑟𝐶⋅MSE(𝑋𝑋𝐶−𝑋𝑋ʹ𝐶) 
+𝑑⋅∑𝑚,𝑛,𝑚≠𝑛(𝐾𝐾𝐷[𝑚,𝑛])2 



+𝑑⋅∑𝑚,𝑛,𝑚≠𝑛(𝐾𝐾𝐶[𝑚,𝑛])2,J(WW)=MSE(y−y^) 
+rD⋅MSE(XXD−XXDʹ) 
+rC⋅MSE(XXC−XXCʹ) 
+d⋅∑m,n,m≠n(KKD[m,n])2 
+d⋅∑m,n,m≠n(KKC[m,n])2, 
 
where : 
J is the cost function, 
MSE denotes mean squared error, 
𝑊𝑊 is a set of the model parameters (weights), 
𝑟𝐷 is the real-valued weight of the drugs reconstruction error, 
𝑋𝑋𝐷 is the drugs’ data matrix in the training batch, 
𝑋𝑋ʹ𝐷 is the drugs data reconstruction matrix in the batch, 𝑟𝐶 is a real-valued weight of 
the cell lines reconstruction error, 
𝑋𝑋𝐶 is the cell lines data matrix in the batch, 𝑋𝑋ʹ𝐶 is the cell lines data reconstruction 
matrix in the batch, 
d is a weight of the dependence penalty, 
𝐾𝐾𝐷 is the covariance matrix of drugs hidden representations in the batch, and 
𝐾𝐾𝐶 is the covariance matrix of cell lines hidden representations in the batch, and 
𝐾𝐾[𝑚,𝑛] denotes the m, nth entry of matrix 𝐾𝐾. 

 
Optimizer = ADAM 
 

 
7. ParsVNN7 

 
Neural Network Configuration: 
Same as DrugCell 
 
Training of parameters is performed using: 
Loss function = L(WI,WS)+Ωλ(WI)+Γη(WS) 
where:  
Ωλ(WI) and Γη(WS) are sparse inducing penalty terms 
 
Optimizer = Proximal Alternative Linearized Minimization (PALM) 
 
 

8. DNN8 
 
Neural Network Configuration: 
 
f(α) = Output of a neuron  
where: 
f is a nonlinear activation function 
 
α = Σni = 1 wixi + b 
where: 



w = Connection weights 
x = Inputs 
b = bias 
 
Training of parameters is performed using: 
Loss function = mean-squared error 
Optimizer = NA 
 

 
9. SWnet9 

 
Neural Network Configuration: 
 
 
GNN (for molecular graph) edge transition: 

 
𝑒ij (𝑡+1) = σ(𝑒ij(𝑡) +𝑔ij(𝑡)) 
 
𝑔ij(𝑡)= 𝑓(𝑤𝑒(𝑣i(𝑡) +𝑣j(𝑡) +𝑏𝑒)) 
 
where : 
σ is the element-wise sigmoid function and  
f is a non-linear activation function like ReLU, 𝑤𝑒∈𝑅𝑑×𝑑  and 𝑏𝑒∈𝑅𝑑 are the trainable 
parameters and bias vector respectively,  
d is the dimension of edge embedding vector. 

 
GNN (for molecular graph) node transition: 
 
𝑣i(𝑡+1) = σ(𝑣i(𝑡) + ∑𝑗∈𝑁(𝑖) ℎij(𝑡)) 
 
ℎij(𝑡) = 𝑓(𝑤𝑛 [𝑣j(𝑡)   𝑒ij(𝑡)] + 𝑏𝑛) 
 
where:  
𝑤𝑛∈𝑅𝑑×2𝑑 and 𝑏𝑛∈𝑅𝑑 are the trainable parameter matrix and bias vector respectively, 
N(i) is the set of neighboring indices of i.  
 
 
The arithmetic mean of all node embedding from transition function : 
ℎ𝐺 = 1/𝑁 ∑N𝑖=1   𝑣i(𝑡) 
 
where N is the number of nodes in the graph 

Weight matrix to evaluate the significance of genetic mutation: 

𝑔𝑒𝑛𝑒𝐶𝑜𝑚 = 𝑔𝑒𝑛𝑒𝐸𝑥𝑝+𝑔𝑒𝑛𝑒𝑉𝑎𝑟∗𝑤ʹ 
  
where:  
geneCom is the combination of expression (geneExp) and mutation (geneVar).  



𝑤ʹ represents the weight for genetic mutation. ∗ represents the vector dot product.  
 

 
Self-attention: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎(𝑄,𝐾))𝑉 
 
Q, K represent SMILES of compounds.  
V represents weight parameters of gene weight layer.  
a(Q, K) is an alignment function which gives scores how well the inputs and the outputs 
match, and they normalized the scores by softmax function.  
 
 
Training of parameters is performed using: 
Loss function = mean-squared error 
Optimizer = ADAM 
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