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APPENDIX A: HISTORICAL NOTES

Equations such as Eq. 11 in the main article have historically arisen in nineteenth century classical physics
and twentieth century quantum physics. The former example is associated with the “equation of telegraphy”
and the latter example with the “Klein-Gordon equation.” In the following paragraphs, these two examples
are briefly discussed.

After a successful submarine telegraph cable was laid across the English Channel in 1851, plans were
made to lay one across the entire Atlantic from Ireland to Newfoundland. After failures in the late 1850’s,
two submarine cables came into operation in September 1866. William Thomson (1824—-1907), later (after
1892) known as Lord Kelvin, was actively engaged in the scientific and engineering aspects of these
projects, even participating in the laying of the cables aboard the vessel Great Eastern. One of the problems
with these early, extremely long cables was that well-defined Morse code signals sent from one end would
arrive at the other end in a delayed and considerably distorted form, making the signals blurred and useless.
The problem and solution can be understood by noting that the two coupled equations for the propagation
of the voltage u(x,t) and current I(x,t) along the cable are
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where L and R respectively denote constant values of the series inductance and resistance, while C' and G
denote constant values of the shunt capacity and conductance. Eliminating /(z, t) between the two first
order equations in Eq.[ST] we obtain the second order “equation of telegraphy”
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where « = G/C, = R/L, and 2 = (LC’)_l. Ifa =5 =0,Eq. reduces to the simple wave equation,
so, under such conditions, a signal could propagate without damping and without dispersion. Although it is
not possible to design such a perfect cable, it is insightful to note the following simple transformation of
Eq.|S2|from dependent variable u(x,t) to v(x, t):
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If we can design a cable with a = § # 0, then v(z,t) will obey the simple wave equation and u(x,t)
will propagate with damping e=2(0+8) but without dispersion. If the damping could be tolerated by
using a very sensitive signal detector, a useful non-dispersed signal should be possible. Thus, the mirror
galvanometer was greatly improved by Kelvin, who patented his device in 1858. The device proved to be
an excellent means of receiving messages through a long cable. Note that another way to compensate for
damping effects is to place signal amplifiers at several places along the cable, as was done later with AT&T
submarine telephone cables; however, vacuum tube amplification and solid state amplification had not been
invented at the time of Kelvin. An important difference between tropical cyclone dynamics and the design
of submarine telegraph cables is that in the tropical cyclone case we cannot adjust the coefficients in our
partial differential equation; we must accept the coefficients given to us by nature. In any event, such was
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the modest beginning of later (1950’s and 60’s) submarine telephone cables and today’s submarine fiber
optic cables that are an important part of the world’s internet. For further discussion of the equation of
telegraphy, see |Stratton| (1941, pages 550 and 594) and |Courant and Hilbert (1962, page 192).

The Klein-Gordon equation is named in honor of Oskar Klein (1894—1977) and Walter Gordon (1893—
1939), who wrote separate papers in 1926 proposing the equation to describe quantum particles in the
framework of special relativity. According to Pais| (1986, pages 288-289), between April and September
1926, this equation was independently stated by at least six authors. Pais refers to it as the “scalar wave
equation,” and describes its role as “relativity without spin.” For further discussion, see Tomonaga| (1997)
and Robinett (1997, pages 54 and 435). Gordon received his doctoral degree in 1921 from the University
of Berlin, working with Max Planck, and later with Max von Laue. The publication dates (1926) of the two
papers is just after classic quantum mechanics papers by Werner Heisenberg and Erwin Schrodinger, but
before the classic Dirac equation, which predicted the existence of antimatter. Oskar Klein (1894—-1977)
grew up in Sweden and in his early career studied with Svante Arrhenius (1859—-1927) in Stockholm and
with Niels Bohr in Copenhagen during the period 1918-1920. Note that Arrhenius was one of the founders
of the science of physical chemistry and was the recipient of the 1903 Nobel Prize in Chemistry; among
atmospheric scientists, Arrhenius is perhaps best known for his 1896 paper hypothesizing that atmospheric
COg increases due to human activity could result in higher global temperatures (Arrhenius, 1896)). In
1923 Klein accepted a position at the University of Michigan, where he worked on the problem of the
anomalous Zeeman effect. In 1926 Klein was appointed docent at Lund University in Sweden, becoming
one of Bohr’s closest collaborators and contributing ideas on correspondence and complementarity and on
the development of Heisenberg’s uncertainty principle. One of Klein’s interests was unified field theory, a
problem which he approached by extension to a fifth dimension. These early ideas of Kaluza-Klein theory
continue to be explored by the present generation of physicists. In 1926 Klein published the paper in which
he determined atomic transition probabilities and introduced what later became known as the Klein-Gordon
equation, the first relativistic wave equation:
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(de Broglie-Einstein relation),

where m is the particle mass, c is the speed of light, 7 is Planck’s constant divided by 27, v is the frequency
of the de Broglie wave and A\ is its wavelength. However, this equation did not result in the correct fine
structure of the hydrogen atom, leading to the introduction of the concept of spin by Pauli and Dirac. Since
the Klein-Gordon equation is incompatible with spin, it is only useful for calculations involving spinless
particles. Nevertheless, it was an important part of the development of quantum theory. To help interpret Eq.
S4] note that the Compton wavelength is a quantum mechanical property of a particle. It was introduced by
Arthur Compton in his explanation of the scattering of photons by electrons (a process known as Compton
scattering). The Compton wavelength of a particle is equal to the wavelength of a photon whose energy is
the same as the mass (using mass-energy equivalence) of that particle. The “reduced” Compton wavelength
of a particle is given by (h/mc), where m is the particle mass and c is the speed of light. The value for
the reduced Compton wavelength of the electron is 3.8616 x 10~'3 m. Comparing the fluid mechanical
equations (Eq. 11 in the main article) with the quantum mechanical equation (Eq.[S4), the analogies are
f < mc?/hand \/g_ﬁ < ¢, so the Rossby length \/E /f ~ 10%m is analogous to the reduced Compton
length h/mc ~ 10~ 3m. It is remarkable that the same partial differential equation can be relevant for
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physical processes on such vastly different scales. For further reading on the remarkable life and legacy of
Oskar Klein, see the webpage of the Oskar Klein Centre in Stockholm, Sweden.

While the telegraphy equation (Eq. [S2) and the Klein-Gordon equation (Eq. [S4) indicate some interesting
mathematical connections with the gradient adjustment problem of atmospheric dynamics, there are also
some interesting family connections. Oskar Klein was the grandfather of Dr. Clara Deser, an NCAR senior
scientist who has made important contributions to understanding the earth’s weather and climate, including
the effects of increased atmospheric CO2 levels due to human activity.

APPENDIX B: SOLUTION OF THE LINEAR PROBLEM VIA HANKEL TRANSFORMS

A useful method for solving the linear Klein-Gordon equation for v(r, ¢) in Eq. 11 in the main article is
based on integral transforms. The integral representation of v(r, ¢) involves order one Bessel functions
J1(kr), since v(r, t) vanishes at r = 0; note that the integral transform solution of the equation for 1/(r, t),
on the other hand, involves order zero Bessel functions Jy(kr) since the radial derivative of /’(r, t) vanishes
at 7 = 0. It follows that the azimuthal wind v(r,t) can be represented as a superposition of order one
Bessel functions J; (kr), where k is the radial wavenumber. The order one Hankel transform pair for the
azimuthal wind is

o(k,t) = /OOOU(T, t) Ji(kr)rdr, and v(r,t) = /Oooﬁ(k‘,t) Ji(kr) k dk. (S5)

Note that standard terminology refers to Eq.|S5|as a Hankel transform pair rather than a Bessel transform
pair. The order one Hankel transform of the v equation in Eq. 11 in the main article yields the ordinary
differential equation
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where w(k) = (f*+ gl_lk’z)l/Q = (gh) 2 (1 + kQ)l/z ’

with s = 1/t, and with u = f/(gh)'/? denoting the inverse of the Rossby length. Note that the order one
Hankel transform of Eq. 11 in the main article involves multiplying it by rJ; (kr) and integrating over all r,
followed by two integrations by parts on the third term in Eq. 11 in the main article. See Schubert et al.
(1980) for further discussion on the use of these particular integral transforms. The solution of Eq. [S6]
satisfying the initial conditions 0(k,0) = 0 and 0¢(k,0) = 0, is
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Using the spectral space solution (Eq. in the second entry of Eq. [S5] we find that the integral
representation of the solution of the linear Klein-Gordon equation for v(r,¢) in Eq. 11 in the main article is
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The second line of Eq. contains the oscillatory factors cos(wt) and sin(wt), where w(k) =

(S8)

( 2+ gBkQ) 12 is the inertia-gravity frequency for wavenumber k. Since the second line involves an
integral over k, it describes dispersive inertia-gravity wave packets. In contrast, the first line does not
contain oscillatory factors, and thus describes the evolving non-oscillatory part of the solution. In fact,
when the forcing is slow enough, the entire right hand side of Eq. [S8|reduces to the balanced solution
vy(r, t). To see this, note that, when s < w, the oscillatory terms involving cos(wt) and sin(wt) become
negligible and the time dependence of the remaining part (i.e., the first line) becomes identical to the time
dependence of the forcing, so that the physical space solution (Eq. [S8)) simplifies to

op(r,t) = rof [L— (1+st)e ™ /00 Jukro) Ji(kr) k dk, (S9)
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where the subscript ‘0’ indicates that this is the ‘balanced’ solution. A simpler form of the balanced solution
(Eq.[S9) can be obtained by noting that the integral can be evaluated (e.g., see page 40 of Erdélyi et al.,
1954, and page 679 of Gradshteyn and Ryzhik, 1980) to obtain the second entry of Eq. 15 in the main
article.

APPENDIX C: ANALOGY BETWEEN SHALLOW WATER DYNAMICS AND THE
DYNAMICS OF A CONTINUOUSLY STRATIFIED FLUID

In section 2 we developed an analogy between shallow water dynamics and the dynamics of a continuously
stratified fluid. The analogy was based on a comparison of the mass continuity equations for the two fluid
systems. Here we discuss an alternative analogy based on the PV dynamics of the two systems. Using
independent variables (r, 6, t), the potential vorticity equation for the axisymmetric, hydrostatic, primitive
equation model is o(DP/Dt) = —(dv/d0)(00/dr) + (f + () (90/08), where f + (g is the isentropic
absolute vorticity, P = (f + (y)/o is the potential vorticity, 0 = —(1/g)(9p/00) is the pseudodensity,
and (D/Dt) = (8/0t) +u(0/dr) + (0/3H) is the material derivative. Now transform this PV equation
from (r,60,t) to (R,0,7), where © = 0, 7 = t, and R is the Lagrangian coordinate defined in section
4. Note that (0/00) # (0/060) and (0/0T) # (0/0t) because (0/00) and (0/07) imply fixed R, while
(8/06) and (9/0t) imply fixed r. Since —(9v/80)(d0/r) + (f + C4)(80/00) = (f + ¢)(00/90),
the PV equation becomes (DP/Dt) = P(00/90), where © = § and (D/Dt) = (3/97) + ©(9/00O).
Defining the potential pseudodensity by ¢* = f/P, we can easily convert the PV equation to (Do*/Dt) =
—a*(@@ /00). Now compare the shallow water model’s potential depth equation in the independent
variables (R, 7) and the continuously stratified model’s potential pseudodensity equation in the independent
variables (R, ©, 7). These two equations can be written as

O _ g ana 27 _ (M>. (S10)
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Because of the close correspondence of the two equations in Eq.[ST0] we can make the following analogies:
h* & o* and S < [0(6*©)/0*0O)]. Note that in regions where the fractional variation of o* with respect
to © is much less than the fractional variation of © with respect to © (e.g., in a PV tower), this analogy
simplifies to S < (00/00). In the lower tropospheric core region of a tropical cyclone, [0(c*©)/c*00)] >
0, so there should be an analogous mass sink in the shallow water equations to simulate a lower tropospheric
layer. In the upper tropospheric core region of a tropical cyclone, [8(0*@) /o*00)] < 0, so there should be
an analogous mass source in the shallow water equations to simulate an upper tropospheric layer. Note that
the analogy for S derived from Eq. [S10]differs in two ways from the analogy for S derived from Eq. 6 in
the main article: o* replaces o and 0/00O replaces 0/00. It could be argued that the analogy for S derived
from Eq. is more useful because it is based on PV dynamics rather than simply mass conservation. For
further discussion of the analogies presented here, the reader is referred to the axisymmetric, hydrostatic,
three-layer, hurricane models of Ooyama (1969) and DeMaria and Pickle| (1988), the former of which is
based on shallow water concepts (i.e., no explicit thermodynamics) and the latter of which is based on the
dynamics of a compressible fluid formulated in isentropic coordinates.

APPENDIX D: A SIMPLE UPPER BOUND ON THE AZIMUTHAL WIND

To help understand which tropical depressions and tropical storms do not develop into hurricanes, consider
how the analytical solution for ~* and P (Egs. 28 and 31 in the main article) can set a simple upper bound
on the azimuthal wind v(r,t). Since P = (f + ¢)(h/h), and since h < h for the cyclonic flows considered
here, it follows that ( < P — f, which can be used to set an upper bound on v(r, t). First, write the solution
for P (Eq. 31 in the main article) as in the second half of Eq.[S11], where ro(¢) is the decreasing radius of
the PV disk. Define the maximum v(r, t) field, denoted by v(™)(r, t), as the field that would result if all of
the potential vorticity were partitioned to the wind field and none to the mass field, meaning that the fluid
depth remained everywhere equal to h. Then, v(r, ) and (™) (r,t) are related by

(rv) _ A(rv™m)
< = P(r.t) —
ror —  ror (r.t) = f,
et (S11)
where P(r.t) = f (1-— 5)(1+t/t Je L o<y < o)
! if 7o(t) <7 < oo.
Integration over r of the first entry in Eq. [ST1]yields the simple upper bound
t) if 0<r <ot
1) < o0 (1, 6) =dro(t) [P(0,6) — g1 { /O IO S T = rol)
ro(t)/r if ro(t) <7 < oo, s12)

£\
where ro(t) = (P(O t)> Ry.

The last formula in Eq. can be confirmed by noting that the absolute angular momentum of fluid
particles on the edge of the collapsing PV disk must be conserved, i.e., 7o(t)v™) (ro(t), ) + 3 =
% f R%. The ultimate (i.e., t — oo0) maximum wind and radius of maximum wind, obtained from Eq. ,
are given by

€

v(m)(ro(oo),oo) = %fRo (m

) and 7ro(c0) = (1 —€)Y/2Ry. (S13)
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Table S1 lists 79(c0) and v(™) (rg(o0), 00) for selected values of e. Figure S1 shows radial profiles of
v(m)(r, 00), as determined from Eq. , for the five values e = 0.960, 0.970, 0.980, 0.990, 0.995. Since
v(r,t) < v™)(r,t), hurricane force values of v(r, t) cannot be produced if ¢ < 0.975.
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FIGURES

Upper Bound for Final Azimuthal Wind
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Figure S1. Radial profiles of p(m) (7,00), a simple upper bound for the final azimuthal wind as determined
from (S12)), for Ry = 200 km, f =5 x 1077 s~1, and five different e = V /(7w R3h) values.

TABLES

Table S1. Ultimate (i.e., t — o0) tropical cyclone properties for a range of values of ¢ = V/ (ﬂ‘Rg h), computed with the parameters Ry = 200 km and

=5 x 107% s~1. The second column lists the value of the dimensionless potential vorticity P(r,t)/f for » = 0 and in the limit ¢ — oo, as computed from
(S11). The third and fourth columns list the radius of maximum wind ¢ (t) and the maximum possible wind v(™) (1o (t), t) in the limit ¢ — oo, as computed
from m The last column lists the storm category, ranging from tropical depression (TD), to tropical storm (TS), to one of the five hurricane categories
(C1-C5).

e | P0,00)/f | ro(c0) | (™) (rg(c0), c0) | Category
(km) (ms™")
0.900 10.0 63.2 14.2 TD
0.950 20.0 44.7 21.2 TS
0.960 25.0 40.0 24.0 TS
0.970 33.3 34.6 28.0 TS
0.975 40.0 31.6 30.8 TS
0.980 50.0 28.3 34.6 Cl
0.985 66.7 24.5 40.2 Cl1
0.990 100.0 20.0 49.5 C3
0.995 200.0 14.1 70.4 G5
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