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Quality control, mapping, quantification of the raw data.
Raw data of fastq format for each sample were assessed for quality using the FastQC tool (version 0.11.5). Raw reads were aligned to the GRCh38 primary genome assembly using Spliced Transcripts Alignment to a Reference (STAR) aligner (version 2.2.1). RSEM (version 1.3.0) was used to count the reads numbers mapped to each gene. Transcripts per kilobase million (TPM) of each gene were calculated based on the reads count mapped to this gene and the length of the gene. All downstream analyzes involving the transcriptome were performed with TPM data, except for differential analysis, which was done with count data.

Differential expression analysis and functional annotation of the differentially expressed genes (DEGs).
Using the Deseq2 package for R1, we performed differential expression analysis between dHGP and rHGP subgroups among liver metastases, primary lesions, and normal liver tissues. A shrinkage estimator was implemented to test the distribution's variance, and the p-values were controlled for false discovery rate (FDR) by the Benjamini–Hochberg (BH) adjustment. The genes with absolute log2 fold-change > 1 and FDR < 0.05 were considered as differentially expressed genes (DEGs). DEGs were annotated by enrichment analysis of Gene Ontology biological process (GO-BP) using R package clusterProfiler.2 The BH method was applied to adjust the p-values and FDR < 0.05 was considered statistically significant. Gene Set Enrichment Analysis (GSEA) analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was performed by employing the R package clusterProfiler. All transcripts were ranked by log2 fold-change between the dHGP and rHGP subgroups. FDR < 0.25 was considered statistically significant.

Logistic regression models for predicting HGPs of liver metastases and Gaussian mixture.
To reduce the number of genes for the logistic regression model, 1887 DEGs were sorted by AUC to predict the HGPs of liver metastases, and 10 genes with the relative biggest AUCs were selected to align and perform 1,023 combinations analysis. For each combination, a logistic regression model was constructed, and a total of 1023 AUCs were generated. The clusters of 1023 models were classified by the Gaussian mixture model.3

HALLMARK pathways and tumor immune microenvironment (TIME) relevant molecular signatures.
To assign activity estimates of 50 HALLMARK pathways4 to each tumor sample, we employed gene set variation analysis (GSVA),5 using the GSVA package in R. We selected 3 cellular estimates6, 23 immune cells7, 8 and 7 immune signatures9 as TIME-relevant molecular signatures. Except for fibroblast, which was calculated by MCPcounter, the other 22 immune cells were quantified by CIBERSORT. The R package IOBR10 was applied to quantify the scores of TIME-relevant molecular signatures. In addition, we collected 72 immune-related genes from Thorsson et al.11

Consensus molecular subtypes (CMS) of primary lesions.
To systematically elucidate the potential differences between dHGP and rHGP in primary lesions, we divided primary lesions into four distinct CMS by applying the "CMScaller" R package .12

Exploration in the transcriptome datasets of fibrotic livers caused by non-cancerous diseases. 
To elucidate the potential influence of normal liver tissues on the formation of different HGPs, we explored the DEGs generated by Ln in the transcriptome datasets of fibrotic livers caused by various non-cancerous diseases. 14 public datasets were collected from the GEO database (https://www.ncbi.nlm.nih.gov/geo/) and the ArrayExpress database (https://www.ebi.ac.uk/arrayexpress), including 9 datasets from homo sapiens and 5 datasets from mus musculus. Detailed information of each dataset was summarized in Table S17. Samples of each dataset were divided into the fibrotic or cirrhotic group or the normal group, and differential expression analysis was implemented using the limma R package. 13

Construction of the Ln-score and C-score.
As shown in Fig S4A, the intersection of DEGs between primary lesions and liver metastases included 243 up-regulated genes in the dHGP subgroup and 44 up-regulated genes in the rHGP subgroup. Scores of 243 genes and 44 genes quantified by the "ssGSEA" method5 were defined as dHGP score and rHGP score, respectively. An approach similar to "Gene expression grade index" 14 was utilized to calculate the C-score of each pure patient: C-score = dHGP score - rHGP score, which represented each patient's transcriptomic characterization of the intrinsic inheritance of the primary lesion respectively. Similarly, 9 up-regulated DEGs in the dHGP subgroup of normal liver tissues were quantified and considered as the Ln-score, which represented individual transcriptomic characterization of the normal liver microenvironment during the formation of liver metastases from primary tumor cells.    

Transcriptome subtype of liver metastases.
Based on the selected signatures of HALLMARK and TIME15, unsupervised clustering was applied to classify 90 liver metastases into three distinct transcriptome subtypes, termed as High-IS (immune score and stromal score), Medium-IS, and Low-IS. Using ConsensuClusterPlus package for R (Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data), this process was executed with parameters including Euclidean distance and Ward's linkage and 1000 times repetitions. 
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Supplementary Figures
Figure S1: Comparisons of the HALLMARK pathways and TIME-related signatures between dHGP and rHGP subgroups in two impure patients.
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(A) Heatmap depicting the differences of HALLMARK pathways and TIME-related signatures between dHGP and rHGP lesions in two impure patients (P27 and P39).

Figure S2: Functional enrichment analysis of DEGs between dHGP and rHGP subgroups in normal tissues (Ln) of metastatic liver lesions.
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(A) GO-BP enrichment analysis of up-regulated genes in the dHGP subgroup of Ln.
(B) KEGG-GSEA analysis between dHGP and rHGP subgroups of Ln.

Figure S3: Prediction of the HGP type of CRLM patients based on the C-score and Ln-score.
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(A) Flow chart of the construction of C-score and Ln-score.
(B) Boxplot depicting the comparison of C-score between dHGP and rHGP subgroups.
(C) Boxplot depicting the comparison of Ln-score between dHGP and rHGP subgroups.

Figure S4: Unsupervised clustering of 90 metastatic liver samples.
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[bookmark: _GoBack](A, B, C, D) Consensus matrixes of 47 dHGP and 43 rHGP metastatic liver samples for each k (k = 2–4) based on the HALLMARK pathways and TIME-related signatures, displaying the clustering stability using 1000 iterations of hierarchical clustering.
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