
   

Supplementary Material: Appendices 

1. Appendix 1: Tools for organism-based ecology: data, traits, OEUs, and models 

1.1. Data 

To empirically test OE hypotheses, one needs information on the properties of organisms of the 

community under study, or at least a representative sample of those organisms. In field studies, the 

number of organisms in a sample may be very high and the assessment of the properties of all these 

organisms a tremendous task. 

Since the end of the last century, a huge amount of new ecological and nature conservation data 

has become available in datasets like BacDive, CESTES, EzTaxon, IUCN Red lists, GBIF, 

PREDICTS, SPI-Birds and TRY. These datasets are quickly expanding. Most of the information is 

on species and species populations. Fortunately, some information on the properties of individual 

organisms is also available (e.g., GBIF has more than 1.39 billion records of the occurrence of 

organisms [https://www.gbif.org/; assessment March 19th, 2020]; see also the SPI-Birds Network and 

Database [https://nioo.knaw.nl/en/spi-birds#quicktabs-qt_hole_nesting_network=0] and the TRY 

database [https://www.try-db.org/TryWeb/Home.php] [115]).  

A great prospect for OE lies in new observation techniques that collect information on the 

properties of multiple organisms in situ simultaneously. For example, flow cytometry, single-cell 

ICP-MS, single-cell metabolics or nanosims can be used to count and measure properties of micro-

organisms [116]; for vertebrates and invertebrates, camera (including smartphone cameras in citizen 

science projects) and microphone traps coupled to data science methods can be used to identify 

properties; and for plants, (airborne) hyperspectral imaging and LiDAR collecting information on 

chemical, morphological and structural traits is available [117]. Each of these techniques collect 

information on the properties of organisms and may, therefore, give a boost to OE [46].  

Statistical analyses of these datasets of properties of organisms and features of location and 

timing are not fundamentally different from analyzing taxon-based datasets. However, because these 

datasets could be huge, new statistical analyzing techniques for ‘big data’ based on machine learning 

could be helpful [24,118,119]. 

 

1.2. Traits 

It is obvious that organisms may differ greatly in their trait values, and that this is ecologically very 

relevant. The issue is studied in Trait-based Ecology (TE) 

[19,32,120,121,122,123,124,125,126,127,128]. Especially in plant ecology there is a long tradition of 

TE, also presented under the name ‘functional diversity’ [32,63,129,130,131,132,133]. However, in 

many TE studies, the trait values are not actually measured, but gathered from existing datasets or 

taxonomic descriptions, and then the means and variances of the trait values are attributed to the taxa 

studied (e.g., [32,134,135,136]). In those cases, the taxon is the research unit, not the organism, and 

trait variance within the taxon is ignored [19,62,65]. 

https://www.gbif.org/
https://nioo.knaw.nl/en/spi-birds#quicktabs-qt_hole_nesting_network=0
https://www.try-db.org/TryWeb/Home.php
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Other studies combine trait-based and organism-based approaches [137]. Much of this 

research focusses on the ecological relevance of intraspecific variability (e.g., [31,55,65,138,139]). 

Clutton-Brock and Sheldon [140] reviewed long-term studies of individually recognizable birds and 

mammals and concluded that these studies play an important role in ecology and evolutionary 

biology. Recent studies using agent-based modelling (ABM) cover a diversity of issues, varying from 

the assessment of wildlife diseases [141] to eradication of invasive small mammals [77], and 

coexistence of small species [59]. ABM has been used to predict the effect of changes in ground 

water salinity due to sea level rising on individual adaption of trees [33,47]. Shifts in isotope ratios 

have been successfully used as a proxy for changes in traits of individual trees to study the effect of 

changes in salinity of ground water on interactions between plant communities [47,48].   

A key question is which traits to include in OE [65]. The list of potential traits is long 

[19,32,142,143,144]. However, some traits may not be relevant for all organisms and traits may have 

high collinearity, which could veil causality. A limited list of standardized traits would be very 

helpful. It would enable meta-analyses of data collected around the world. Selected traits should a) be 

present in all organisms, b) be essential for the survival and reproduction, i.e., for the fitness of the 

organism, and c) express the effect that the organism has on the fitness of other organisms. In other 

words, they should be essential for the performance of the organism and its relationship to its biotic 

and abiotic environment [145,146]. And preferably they should be weakly correlated. So, we are 

looking for ‘Independent Essential Organism Traits’. ‘Body size’ and ‘metabolism rate’ are proven 

examples of such traits [37,80]. In addition, we consider traits that express resource uptake and waste 

output, reproduction investment, moment of appearance in and disappearance from an area (including 

birth and death), and movement through the area. We challenge ecologists to try to define a 

comprehensive list of Independent Essential Organism Traits and their measurement. 

 

1.3. OEUs 

Assigning organisms as research and measurement units may have far-reaching consequences for 

study designs in ecology. Assessing the effect of abiotic factors on highly divers organisms may be 

challenging. And all potential interactions between organisms within a community will be an even 

more frighteningly huge number of interactions than the interactions between species. 

For the study of interactions between organisms, ways of grouping the organisms are needed. 

Organisms are in their striving to survive or reproduce limited by their genotype and experience. We 

can try to capture the genotype and experience of an organism in a set of measurable properties of 

organisms given our research questions, i.e., in the ecological relevant features of their phenotypes. 

For that, we revitalize the ‘Operational Ecological Unit’ (OEU) [57] under a slightly new definition, 

viz as a set of organisms that are ecologically alike, i.e., all organisms of an OEU have properties that 

lay in the same predefined trait value range for a predefined, limited set of traits. For example, the 

autotrophs that live in fresh water could be divided in a range of OEUs based on body size.  Or the 

arthropods of a grassland could be assigned to OEUs according to their food preferences, such as 

herbivores, omnivores, predators, and detrivores. 

In ecology, ‘functional’ classifications are widely used and known as ‘guild’, ‘functional 

group’, ‘Plant Functional Type (PFT)’, ‘trait syndromes’, or the like [19,115,147,148]. However, 

these functional groups are usually groups of species, not of individual organisms. As a consequence, 
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variance in a relevant trait may be large within such groups [19,148]. For example, the simple growth 

form PFT defines ‘herbs’, ‘bushes’ and ‘trees’, which seem to coincide with plant height groups. But 

a seedling of an oak is regarded as a very small tree, not as an herb, attributing to large variance in 

plant height within the PFT. To stress the importance of grouping organisms instead of species, we 

propose OEU to be used in OE. 

While studying the interactions between all organisms of a community is impractical, and 

usually not feasible, hypotheses of the form “OEU O, i.e., organisms with the set of trait values O, 

interact in such and such way with OEU P, i.e., organisms with the set of trait values P” do allow 

testing.  

Note that OEUs are pragmatic sets that are defined for answering spatiotemporal specific 

research questions, i.e., for empirically testing predictions. They can be any ecological relevant 

subsets of a community. They can bring together organisms that belong to different species, but also 

subsets of species, as long as they have more or less the same properties. For example, males and 

females can be different OEUs, as can larvae and adults, or organisms of different body size.  

It is crucial to actually be able to assess the trait values of the organisms in field studies 

[19,65]. For analyzing field data, OEUs offer the same statistical possibilities and limitations as the 

often used ‘Operational Taxonomic Units’ (OTUs). OEUs can replace species in METE, so that the 

ASNE-model would become an AONE-model, predicting how metabolic energy (E) is distributed 

over individuals (N), and how individuals are distributed over OEUs (O) and area (A) [98]. 

In order to reduce computing time, in computer models the use of ‘super-individuals’ has 

been proposed, which are in many respects equivalent to OEUs [87,149]. But OEUs can also be used 

for empirical studies, because they are sets that have emergent properties which can differ between 

spatiotemporal subsets of the same OEU and which can be assessed, depending on the research 

question. In fact, OEUs can be regarded as having the same analytic role in OE as species have in 

OSCE. The size of an OEU could be the number of individuals, but also its total biomass. At any 

time, an OEU may have a different spatial range, so that an OEU could colonize an area or become 

extinct. Also, the distribution of individuals over values of both defining and non-defining traits may 

be different between locations or may change over time. For example, the ratio of day to night active 

large mammal predators may change as a result of human activities [150]. 

 

1.4. Models 

The long tradition of using models for predicting and simulating communities will help to further 

develop OE (e.g., [46,151]). In ecology, models do not provide proof of general patterns themselves 

because, although they contain parameters that relate dependent and independent variables, the 

parameters are not well-established constants as in physics. The models are descriptive and their 

parameters need to be estimated from empirical data by model fitting. This usually results in 

parameter values that are highly contingent [15,152,153]. But the models can be used for generating 

patterns, of which the generality can then be studied [34].  

Based on our reasoning, we think that a distinction between two types of models is relevant 

here: species-based models (SBM) and agent-based models (ABM, including the closely related 

spatial-explicit models). 
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SBM are rooted in Lotka-Volterra models and calculate the development of communities based 

on abstract population parameters like birth rates, death rates, and conversion efficiencies, which 

makes them essentially species-based. The models can be extended for location and time specific 

networks, but then tend to become overly complex (e.g. [154]).  

In contrast, ABM, which are also called individual-based models, simulate the development of 

populations and communities based on the properties of individual organisms, locations and time 

[34,35,36,41,59,72,139,155]. By focusing on ecologically relevant entities (for this reason these 

models are called ‘agent-based’), ABMs aim to simulate the actual processes that take place in an 

ecosystem [46]. To incorporate the feedbacks and uncertainty that are present in real ecological 

systems, a trend has been to simulate how proximate decisions are made based on the individual’s 

current state and short-term predictions. DeAngelis and Diaz [33] discuss the different modelling 

approaches and prospects. Zakharova et al. [137] plead for combining trait-based modelling and 

ABM in order to simplify the parameterization of models. 

In that regard, it is interesting that in some of the functional–structural plant models (FSPMs) 

[156], building blocks, or metamers, are used to describe the individual plant. These models have 

been around for a couple of decades, and could be a starting point for a type of OE at least in plant 

ecology. The agents in this case are modules (metamers) within the plant and algorithms are used to 

model repetitive branching patterns by which the plants grow, with different morphologies for 

different species. These methods arose out of interest in the development of 3-D spatial structure of 

individual woody and herbaceous plants and in the visualization of their structures. Because the 

development of plant structure interacts with light capture and material flows, these can be integrated 

into a general methodology that combines geometric structure with function. i.e., FSPM’s, in which 

plant architecture, including roots, is explicitly modelled in 3-D and linked to process-based 

modelling of functional aspects, such a light capture, and carbon and nutrient flows (e.g., [157,158]). 

This approach, while focusing on the internal structure and function of plants, is also used at the scale 

of multi-plant combinations to provide better understanding of the details of plant interactions. 

Overlapping of objectives was seen in the survey of several types of applications, which showed that 

population-level ABMs and FSPMs are addressing some of the same issues of primary production, 

biodiversity, spatial heterogeneity and pest problems, although at different spatial scales. For 

example, although FSPMs do not deal with population growth through seed dispersal, they do 

simulate fruit and thus fecundity. It is possible that the time is right to make use of the 

complementarity of the approaches to facilitate overall progress in ABMs and OE. One sign is that 

modelling methodologies such as Pattern-Oriented Modelling [88] and Overview, Design and Details 

[89] are being adopted in some FSPM papers (e.g., [159]). 

ABMs are in a developmental stage [36]. At the moment, they usually have numerous 

parameters: the diversity of species is extended to the diversity of properties of organisms, so that 

species are still part of ABMs (e.g., [59]). So, they often do not yet result in generalities over 

different kind of organisms. But we expect that, because ABMs try to simulate processes, they are 

able to show real patterns [160,161]. These patterns and the knowledge of the structure of the ABM 

can then be used to develop a theory that predicts these patterns.  

Next, hypotheses are to be deduced from such a theory that can be tested with empirical data. 

The testing of the Neutral Theory of Biodiversity is a good example of this procedure [162,163]. We 

also think that, in the end, ABMs will need fewer parameters than SBMs, because we expect that the 
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number of relevant traits that describe organisms will be much lower than the number of species [89] 

(Appendix 2). Ultimately this may lead to accurate predictions of communities [25,160,164].  
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2. Appendix 2: The temporal change of North American migration birds studied by 

Organism-based Ecology 

Recently, Weeks et al. [55] showed that over a period of 40 years, body size of North American 

migratory bird species decreased and wing length increased, probably in response to climate change. 

They focused on differences between species, but the pattern seemed consistent across species. We 

wanted to know whether OE was able to show us this general pattern of body size increase and wing 

length decrease, even if we had no knowledge on the species of the individual birds. For answering 

this question, we reanalyzed the dataset of Weeks and others in two ways: the traditional use of 

Linear Mixed Models (LMM) and the use of Maximum Entropy Theory of Ecology (METE). 

LMM estimate the parameters of a linear, additive equation that describes the relationship 

between dependent and independent variables by fitting an equation optimal to observations under 

the assumption that the deviations of the observation from the equation, the residuals, are normally 

distributed. The equation predicts the values of the dependent variable and the parameters represent 

the effect sizes. The models are called mixed because they correct for unbalanced sampling by 

including random effect variables. 

METE is not an alternative for LMM, but a way of generating unbiased neutral null-models 

with a limited number of constraints based on the first principle that in a system that is in 

equilibrium, particles will be distributed such that maximum entropy will be reached. In ecology, the 

individual organisms are regarded as the particles and the system is a community. The METE models 

predict the distribution of organisms when the community is in equilibrium, i.e., when the 

distribution of the organisms changes only due to random movements, and the organisms are neutral, 

i.e., they have no properties that affect each other’s distribution. In that case, the system is accurately 

described by its constraints. Therefore, deviations of observation from the predictions indicate that 

the system is not sufficiently described by its constraints. These deviations can then be analyzed to 

find out whether factors push the community out of equilibrium, organisms have non-neutral 

properties, or the community has spatiotemporal properties that are not defined in the constraints. 

Here, we will analyze the deviations with an LMM, but better ways of analyzing may be available. 

Also, new ways of analyzing may need to be developed.  

In the following analyses, we explore these different approaches for analyzing ecological 

data. 

 

2.1. Traditional use of Linear Mixed Models 

In order to study the change over time of the tarsus length, a proxy of body size, and the wing length 

of migration birds, we applied four Linear Mixed Models to the observations of Weeks and others, 

two including information on the species to which the organisms belong and two without species 

information. We included sex and age class of the birds as possible independent variables. By doing 

so we acknowledged that sex and age define four Operational Ecological Units (OEUs): female 

hatchlings, male hatchlings, female post-hatchlings, and male post-hatchlings. 
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The estimated effect size of Year on the log-transformed tarsus and wing length showed that 

the models without species as factor were able to show an effect of Year on tarsus and wing length, 

although their conditional and marginal R2’s were low (about 1% resp. 0.6% for tarsus length and 3% 

resp. 2.4% for wing length; Table A2.1). Low R2’s should not surprise us, knowing that the data are 

the outcome of an extremely noisy process: the fatal collision of a migrating birds with buildings. 

What should surprise us is that models including species showed very high conditional and low 

marginal R2, and lowest log-likelihood of the models including Year, which means that the models 

without Year are actually the best models. The very high conditional R2 indicate overfitting. This 

problem is absent in the models without taxonomic information. So, ignoring species results in 

reliable models. Graphs of the raw data of the change of length suggested that the rate of length 

change altered somewhere in the years 2000-2005 (Fig. A2.1). Tarsus length seemed to decrease over 

the years, but this decrease accelerated most strongly in birds in their hatching year, probably after 

2003. Wing length seemed to increase, but only after 2000 and only in birds after their hatching year 

and had, therefore, experienced at least one migration.  

 

Table A2.1: Effect of year on tarsus length (n=58,497) and wing length (n=62,628) in LMM models.  

Tarsus length Year Cond. R2 Marg. R2 #Df LogLik Df 𝛘2 p-value 
 

Model incl. taxon incl. 0.980 0.003 13 119213 

-6 41.52 <0.001 *** 

  excl. 0.979 0.002 7 119234 

Model excl. taxon incl. 0.010 0.006 10 23228 

-4 15.76 0.003 ** 

  excl. 0.010 0.005 6 23220 

Wing length                  

Model incl. taxon incl. 0.985 0.013 13 137416 

-6 315.98 <0.001 *** 

  excl. 0.988 0.010 7 137574 

Model excl. taxon incl. 0.030 0.024 10 15528 

-4 175.45 <0.001 *** 

  excl. 0.028 0.019 6 15441 

The grey area shows the Likelihood Ratio Test that include taxonomic information as a random effect 

variable:  

Model incl. taxon and year: ln(Length) ~ 1 + Year * Age * Sex + (1 | Taxon) + (1 | factor(Year));  

Model incl. taxon, excl. year: ln(Length) ~ 1 + Age * Sex + (1 | Taxon) + (1 | factor(Year)).  

The white area shows the Likelihood Ratio Test without taxonomic information:  

Model excl. taxon and year: ln(Length) ~ 1 + Year*Age * Sex  + (1 | factor(Year));  

Model excl. taxon, excl. year: ln(Length) ~ 1 + Age * Sex  + (1 | factor(Year)).  
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The best model, with or without Year as fixed effect variable, is indicated in bold in the Year column. 

In all cases the fixed variables include Age, Sex, and all the interactions, while the factor Year, i.e., 

year as a categorical variable, is a random effect variable. Models were estimated using the function 

lmer() of the package lme4 (version 1.1-27) [165]; R2 estimations with performance::r2 of the 

package performance (version 0.7.2) [166]; LRT was done with lrtest() of the package lmtest 

(version 0.9-38) [167], all in R version 4.0.3 [56]. 

 

Figure A2.1: Smoothed nonlinear regression lines of the raw relationship between Year and a) 

Tarsus and b) Wing length in mm for birds in their hatching year and after their hatching year. Lines 

were constructed with the default settings of the function scatterplot() of the package car (version 

3.0-10) [168] in R version 4.0.3 [56]. 

 

For this reason, we decided to include a new variable, Period, that separates the time before 

2000 from 2000 onwards, in our model. The results showed that the rate of change was indeed 

different before and after 2000 (Table A2.2). The model for ln(Wing length) predicted that wing 

length did not change in hatchlings, but increased up to 2000 in older birds and decreased slightly 

after 2000 (Fig. 2 in main text). So, wing length change is only visible in birds that migrated at least 

once. We might be tempted to conclude that wing length change is due to alterations during 

migration, although also non-migrating birds may show changing wing length [55,169]. 

 

Table A2.2: Effect sizes of the fixed variables, including their interactions, on tarsus and wing 

length, as estimated by the function lmer() of the package lme4 [165] in R version 4.0.3 [56]. 

ln(Tarsus length)      

 Cond. R2 Marg. R2 df LogLik AIC  

a b 



 
9 

 0.010 0.007 58461 23236.4 -46436.8  

 

Estimate Std. Error df t-value Pr(>|t|) 

 

(Intercept) 6.04900 1.40500 82.77 4.306 0.000 *** 

Age 1.24700 1.28900 58000 0.967 0.333 

 

Sex -0.79320 1.36500 58460 -0.581 0.561 

 

Year -0.00144 0.00070 82.68 -2.064 0.042 * 

Period 0.07118 1.69900 91.61 0.042 0.967 

 

Age:Sex -1.13100 1.80700 58460 -0.626 0.532 

 

Age:Year -0.00063 0.00064 58000 -0.981 0.327 

 

Sex:Year 0.00040 0.00068 58460 0.59 0.555 

 

Age:Period -3.56900 1.71200 57620 -2.085 0.037 * 

Sex:Period -1.49600 1.67200 58470 -0.895 0.371 

 

Year:Period -0.00005 0.00085 91.64 -0.056 0.956 

 

Age:Sex:Year 0.00057 0.00090 58460 0.634 0.526 

 

Age:Sex:Period 5.17600 2.38300 58470 2.172 0.030 * 

Age:Year:Period 0.00179 0.00086 57620 2.094 0.036 * 

Sex:Year:Period 0.00076 0.00083 58470 0.907 0.365 

 

Age:Sex:Year:Period -0.00260 0.00119 58470 -2.185 0.029 * 

ln(Wing length) 

 Cond. R2 Marg. R2 df LogLik AIC  

 0.032 0.027 62610 15571.4 -31106.8  

 

Estimate Std. Error df t-value Pr(>|t|) 
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(Intercept) -2.81300 1.74800 74.87 -1.609 0.112 

 

Age 7.00500 1.43900 62430 4.868 0.000 *** 

Sex -1.63500 1.50900 62610 -1.083 0.279 

 

Year 0.00353 0.00087 74.79 4.053 0.000 *** 

Period 8.80800 2.11300 83.44 4.169 0.000 *** 

Age:Sex -0.49860 2.01100 62610 -0.248 0.804 

 

Age:Year -0.00350 0.00072 62430 -4.882 0.000 *** 

Sex:Year 0.00084 0.00075 62610 1.12 0.263 

 

Age:Period -12.08000 1.93700 62170 -6.236 0.000 *** 

Sex:Period 0.74120 1.87400 62620 0.396 0.692 

 

Year:Period -0.00441 0.00106 83.48 -4.182 0.000 *** 

Age:Sex:Year 0.00025 0.00100 62610 0.248 0.804 

 

Age:Sex:Period 4.04700 2.68900 62620 1.505 0.132 

 

Age:Year:Period 0.00606 0.00097 62170 6.256 0.000 *** 

Sex:Year:Period -0.00037 0.00094 62620 -0.393 0.694 

 

Age:Sex:Year:Period -0.00203 0.00134 62620 -1.513 0.130 

 

 

Our reanalysis confirmed that we did not need information on the species to which the birds 

belonged to establish the general pattern of the change in tarsus and wing length over time. As a 

matter of fact, the models without information on species were more reliable. Moreover, we were 

able to show that the rate of change differed before and after 2000 between age groups, a pattern that 

could not be discovered when including species as factor in the analysis. 

 

2.2. Maximum Entropy Theory of Ecology 
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As a tentative example of prospects of the application of METE, we also analyzed the metabolic rate 

of the individuals, its change over the years, and the effect of age, sex, and body size on this change. 

We don’t want to pretend that we were able to fully apply a METE-analysis, we just wanted to show 

that such an analysis may result in supplementary information that could deepen our knowledge. The 

analyses were done with the R package meteR (version 1.2) [170]). 

The data of Weeks and others [55] provide the biomass of each migration bird found. This offers the 

possibility to study the metabolic rate of the birds, because of Kleiber’s general relationship: 

metabolic rate = mass0.75 [98]. The change of metabolic rate over time showed about the same pattern 

as that of tarsus length (Fig. A2.1a; Fig. A2.2). This was to be expected since tarsus length is a proxy 

for body size. But the LMM analysis showed different results: of the main effects, not Year, but Age 

and Sex are significant (Table A2.2; Table A2.3).  

 

Figure A2.2: Smoothed nonlinear regression lines of the raw relationship between year and 

standardized metabolic rate of hatchlings (magenta) and older birds (blue). Lines were constructed 

with the default settings of the function scatterplot() of the package car (version 3.0-10) [168] in R 

version 4.0.3 [56]. 

Table A2.3: Effect sizes of the fixed variables, including their interactions, on standardized 

metabolic rate, as estimated by the function lmer() of the package lme4 [165] in R version 4.0.3 [56]. 

Standardized Metabolic rate  

 Cond. R2 Marg. R2 df LogLik AIC  

 0.022 0.011 52372 -73355.8 146747.5  

 

Estimate Std. Error df t-value Pr(>|t|) 

 

(Intercept) 13.5400 13.0000 29.3 1.04 0.306 
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Age 17.2300 8.2590 52390.0 2.09 0.037 * 

Sex -19.5600 8.9270 52340.0 -2.19 0.028 * 

Year -0.0067 0.0065 29.3 -1.04 0.306 

 

Period -18.0800 15.6000 31.6 -1.16 0.255 

 

Age:Sex 18.3100 11.7100 52340.0 1.56 0.118 

 

Age:Year -0.0086 0.0041 52390.0 -2.10 0.036 * 

Sex:Year 0.0098 0.0044 52340.0 2.21 0.027 * 

Age:Period -23.4000 11.1400 52340.0 -2.10 0.036 * 

Sex:Period 15.5100 11.0200 52340.0 1.41 0.159 

 

Year:Period 0.0090 0.0078 31.6 1.16 0.256 

 

Age:Sex:Year -0.0091 0.0058 52340.0 -1.56 0.118 

 

Age:Sex:Period -10.3500 15.5900 52350.0 -0.66 0.507 

 

Age:Year:Period 0.0117 0.0056 52340.0 2.10 0.036 * 

Sex:Year:Period -0.0077 0.0055 52340.0 -1.40 0.163 

 

Age:Sex:Year:Period 0.0051 0.0078 52350.0 0.65 0.515 

 

 

However, when the expected distribution of metabolic rate over all birds was calculated 

according to METE, it was clear that the actual distribution deviated strongly from the one expected, 

with metabolic rates higher than expected in all birds with metabolic rates under 5 g0.75 (Fig. A2.3).  
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Figure A2.3: Distribution of metabolic rate. Red line is the expected distribution based on METE, 

black circles are the metabolic rates found. Distribution of observed metabolic rates deviates 

significantly from expected METE distribution (tested using the logLikZ() function; z=949.996 

[170]). 

 

When we analyzed the effect of Age, Sex, Year, and Period on the deviation of actual 

metabolic rate from the predicted one using LMM, the marginal R2 was not better than in the 

traditional LMM’s (Table A2.4). The results showed that the intercept was significantly higher than 

the expected zero. Further, most remarkable, the same main factors and interactions were significant 

as when we analyzed the effect of these independent variables on wing length, but with inversed 

regression coefficients (compare Table A2.2 and Table A2.4). The model predicted in hatchlings that 

deviations of metabolic rate slightly increased over time, as did wing lengths, but in older birds that 

deviations decreased before 2000, but increased after 2000, while wing lengths changed vice versa 

(Fig. 2 and Fig. 3a). Could the inverse relationship between wing length and deviations of expected 

metabolic rate distribution mean that in birds, wing length is the factor that makes birds metabolically 

non-neutral, i.e., that wing length affects metabolic rate independently of body size? 

 

Table A2.4: Effect sizes of the fixed variables, including their interactions, on the residuals of the 

METE predicted metabolic rate, as estimated by the function lmer() of the package lme4 [165] in R 

version 4.0.3 [56]. 

Residuals METE Metabolic rate 

 Cond. R2 Marg. R2 df LogLik AIC  

 0.024 0.019 52372 3532.3 -7028.6  
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Estimate Std. Error df t-value Pr(>|t|) 

 

(Intercept) 7.4170 2.3650 55.1 3.14 0.003 ** 

Age -5.0520 1.9030 52340.0 -2.65 0.008 ** 

Sex 3.1600 2.0580 52350.0 1.54 0.125 

 

Year -0.0034 0.0012 55.0 -2.92 0.005 ** 

Period -9.6260 2.8670 60.8 -3.36 0.001 ** 

Age:Sex -4.3570 2.6990 52360.0 -1.61 0.106 

 

Age:Year 0.0025 0.0009 52340.0 2.66 0.008 ** 

Sex:Year -0.0016 0.0010 52350.0 -1.55 0.120 

 

Age:Period 7.4070 2.5670 52140.0 2.89 0.004 ** 

Sex:Period -0.4315 2.5390 52360.0 -0.17 0.865 

 

Year:Period 0.0048 0.0014 60.8 3.37 0.001 ** 

Age:Sex:Year 0.0022 0.0013 52360.0 1.61 0.107 

 

Age:Sex:Period -0.3099 3.5940 52370.0 -0.09 0.931 

 

Age:Year:Period -0.0037 0.0013 52130.0 -2.89 0.004 ** 

Sex:Year:Period 0.0002 0.0013 52360.0 0.15 0.880 

 

Age:Sex:Year:Period 0.0002 0.0018 52370.0 0.11 0.916 

 

Residuals METE Metabolic rate, including body size 

 Cond. R2 Marg. R2 df LogLik AIC  

 0.060 0.055 52356 4530.1 -8992.1  

 Estimate Std. Error df t-value Pr(>|t|)  

(Intercept) 9.7270 2.3350 78.4 4.166 0.000 *** 
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Age -6.4370 2.0250 52360.0 -3.179 0.001 ** 

Sex 4.3400 2.1590 52370.0 2.010 0.044 * 

Year -0.0046 0.0012 78.3 -3.951 0.000 *** 

Period -12.8600 2.8270 85.5 -4.548 0.000 *** 

Size -0.8878 4.4120 52390.0 -0.201 0.841 

 

Age:Sex -5.5460 2.8550 52370.0 -1.942 0.052 . 

Age:Year 0.0032 0.0010 52360.0 3.181 0.001 ** 

Sex:Year -0.0022 0.0011 52370.0 -2.032 0.042 * 

Age:Period 9.3460 2.6880 52250.0 3.477 0.001 *** 

Sex:Period -1.7330 2.6330 52370.0 -0.658 0.510 

 

Year:Period 0.0064 0.0014 85.5 4.566 0.000 *** 

Age:Size 8.3610 5.3980 52380.0 1.549 0.121 

 

Sex:Size -2.7230 6.3110 52370.0 -0.431 0.666 

 

Year:Size 0.0005 0.0022 52390.0 0.223 0.824 

 

Period:Size 7.7210 5.9800 52300.0 1.291 0.197 

 

Age:Sex:Year 0.0028 0.0014 52370.0 1.939 0.053 . 

Age:Sex:Period 0.6012 3.7440 52370.0 0.161 0.872 

 

Age:Year:Period -0.0047 0.0013 52250.0 -3.479 0.001 *** 

Sex:Year:Period 0.0008 0.0013 52370.0 0.642 0.521 

 

Age:Sex:Size 6.2780 7.9090 52370.0 0.794 0.427 

 

Age:Year:Size -0.0042 0.0027 52380.0 -1.548 0.122 

 

Sex:Year:Size 0.0014 0.0031 52370.0 0.442 0.658 
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Age:Period:Size -19.7800 8.0520 52390.0 -2.456 0.014 * 

Sex:Period:Size 4.5710 8.8310 52390.0 0.518 0.605 

 

Year:Period:Size -0.0039 0.0030 52300.0 -1.295 0.195 

 

Age:Sex:Year:Period -0.0003 0.0019 52370.0 -0.141 0.888 

 

Age:Sex:Year:Size -0.0031 0.0039 52370.0 -0.793 0.428 

 

Age:Sex:Period:Size -7.1440 12.0900 52370.0 -0.591 0.555 

 

Age:Year:Period:Size 0.0099 0.0040 52390.0 2.458 0.014 * 

Sex:Year:Period:Size -0.0023 0.0044 52390.0 -0.519 0.603 

 

Age:Sex:Year:Period:Size 0.0036 0.0061 52370.0 0.589 0.556 

 

 

However, LMM’s may not be fit for application here, because of the specific frequency 

distribution of the deviations. In this case, the deviations showed a distinct pattern, viz, that 

metabolic rates were higher than expected in all small birds, which cannot be acknowledged in 

LMM’s. What we could do, though, was to include another independent variable in our LMM, a 

variable that distinguished small (metabolic rate < 5 g0.75) from large (metabolic rate ≥ 5 g0.75) birds. 

This resulted in a much better fitting LMM (Δ AIC = 1963.5; marginal R2 more than doubled from 

0.019 to 0.055; Table A2.4). The predictions of this model showed that the large birds dominate the 

picture when body size was ignored, but actually only the hatchlings of large birds did not change in 

deviations of METE predictions in the period till 2000, and the small, older birds decreased after 

2000 (Fig. 3). We leave the ecological interpretation of these results to those that are more familiar 

with the effects of climate change on North American birds. We would like to stress here that the 

application of METE showed us that body size, as well as age and sex, is a highly relevant trait for 

such an ecological interpretation. 

 

2.3. Conclusions 

The application of OE on the temporal change of North-American migrating birds that collided to 

buildings showed us that: 

- ignoring species resulted in reliable models and showed that hatchlings and older birds 

changed differently in the period before than that after the year 2000 

- analyzing how metabolic rate deviated from that expected of METE showed that small birds 

deviated differently from large birds; including size class as independent variable resulted in a 

better fitting model and thus in higher predictability  
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- specific statistical techniques addressing the analysis of deviations from METE predictions 

may be needed. 
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