
Supplementary Material

1 DIMENSIONS OF TESTED SPECIMENS

Table S1. Diameters and lengths of the 5/10 specimens measured after polishing of the contact surfaces;
every listed value is the arithmetic mean of three measurements.

mat. diameter D [mm] of a specimen n length L [mm] of a specimen n

age 1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 hr. 5.01 5.00 5.00 5.00 4.98 4.96 − 9.37 9.25 9.42 9.20 9.13 8.88 −
1.5 hrs. 5.01 5.00 5.01 5.00 5.02 5.00 4.99 9.30 9.33 9.33 9.46 9.37 9.30 9.35

3 hrs. 4.98 5.00 4.99 4.99 4.99 4.99 − 9.07 9.36 9.44 9.07 9.27 9.14 −
7.5 hrs. 4.99 5.00 5.01 5.02 5.00 4.98 4.98 9.47 8.54 9.32 9.25 9.31 8.98 8.74

25.5 hrs. 5.01 4.98 4.99 4.99 5.02 5.00 5.04 9.09 9.45 9.02 9.37 8.99 9.20 9.04

7 days 4.99 4.99 4.99 4.98 4.95 5.00 5.01 8.96 9.25 9.24 9.50 8.84 9.13 9.29

7 days* 4.98 4.98 5.01 5.00 5.00 4.98 5.02 9.21 9.29 9.07 9.28 9.36 9.32 9.26

14 days 4.97 5.01 4.99 4.99 4.99 5.03 4.99 8.84 9.32 9.25 9.15 9.11 9.14 9.27

14 days* 5.01 5.00 5.02 5.02 5.00 5.00 5.01 9.36 9.47 9.34 9.20 9.48 9.11 9.09

21 days 5.02 5.01 5.00 5.03 5.03 5.00 5.02 9.38 9.44 9.33 9.47 9.20 9.11 9.10

28 days 5.01 5.02 5.01 4.99 5.00 5.03 5.02 9.15 9.12 9.25 9.19 9.22 9.19 9.36

* the numbering of the specimens continues as n+ 7.

Table S2. Diameters and lengths of the 4/6 specimens measured after polishing of the contact surfaces;
every listed value is the arithmetic mean of three measurements.

mat. diameter d [mm] of a specimen n length L [mm] of a specimen n

age 1 2 3 4 5 6 7 1 2 3 4 5 6 7
1.5 hrs. 3.89 3.98 3.99 3.98 3.91 3.93 3.91 5.04 4.97 5.32 5.48 5.43 5.41 4.99

7.5 hrs. −‡ 3.88 3.86 3.95 3.99 3.94 3.98 −‡ 5.17 5.69 5.31 5.38 5.22 5.43

25.5 hrs. 3.94 3.96 3.89 3.90 3.94 3.90 3.90 5.63 5.27 5.46 5.45 5.41 5.44 5.68

7 days 3.91 3.92 3.98 3.96 3.90 3.94 3.91 5.27 5.51 5.34 5.45 5.25 5.51 5.13

14 days 3.91 3.88 3.93 3.89 4.04 4.00 3.93 5.47 4.30 5.09 5.18 5.36 5.01 4.73

21 days 3.88 3.95 3.96 3.99 3.91 −‡ 4.01 5.25 5.12 5.24 4.60 5.26 −‡ 5.49

28 days 3.89 3.96 3.97 3.91 3.93 3.89 3.99 5.17 5.21 5.49 5.17 5.10 5.14 5.17

‡ specimens failed during handling, prior to testing
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2 ANALYSIS OF THE EQUIVALENT SHEAR STRENGTH OF THE LDCR HYDRATES

In the following, it is checked whether or not the LDCR hydrates could be the microstructural origin of
macroscopic failure of mature Biodentine subjected to uniaxial compression. To this end, the macroscopic
uniaxial compressive strength, see Eq. (30), is downscaled according to Eqs. (21)–(24) into the LDCR
hydrates, see Fig. S1.

0 25 50 75 100 125 150

-350

-250

-150

-50

0

50

Fig. S1. Axial and lateral components of the microscopic principal stress states experienced by less-dense
calcite-reinforced hydrates, as a function of the indentation modulus M .

The correlation between the lognormal distributions of the indentation modulus M and the indentation
hardness H of the LDCR hydrates is illustrated in Fig. S2(a), (b). In the same way, the known lognormal
distribution of the indentation modulus M is correlated with the sought lognormal distribution of the
equivalent shear strength C of the LDCR hydrates, see Eq. (38). Realistic values of µC and σC are identified
such that the corresponding straight line in Fig. S2(c) becomes a tangent to the graph showing |σaxi/2|
over M . The contact point refers to the 50% quantile of M . As for the LDCR hydrates, this value amounts
to 45.1GPa, see Fig. S2(c) and Table 7. The corresponding lognormal parameters of the distribution of the
equivalent shear strength read as

µC = 4.737 , (S1)

σC = 0.365 . (S2)

The corresponding probability density function of the equivalent shear strength of the LDCR hydrates is
illustrated in Fig. S2(d). Related values of the mode, the median, and the mean value are listed in Table S3.

Table S3. Mode, median, and mean value of the lognormal distribution of the equivalent shear strength C
of the LDCR hydrates, see also Eqs. (S1) and (S2).

mode [MPa] median [MPa] mean [MPa]
99.9 114.1 122.0

The degree of utilization of all LDCR hydrates is larger than or equal to some 78%. This is smaller than
the utilization degree of the HDCR hydrates, compare Figs. S3(a) and 13(a). All LDCR hydrates between
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Fig. S2. (a), (b) Quantile-based power-law correlation between the lognormal distributions of the indentation
modulus (see the ordinates) and the indentation hardness (see the abscissas) of the LDCR hydrates:
representation of the power-law-relation according to Eq. (37) with X = H , Y = M , µM = 3.81,
σM = 0.78, µH = 0.14, and σH = 1.23, see Table 8 and Dohnalı́k et al. (2021): (a) natural scale, as well
as (b) double-logarithmic representation; the black “+” symbols mark p-quantiles, with values of p equal
to the printed percentage values. (c) Illustration of the failure criterion (34): the equivalent shear strength
of all LDCR hydrates is larger than |σaxi/2|, except for the median value of the indentation modulus,
for which |σaxi/2| = C; the blue “+” symbols mark p-quantiles, with values of p given as percentage
values. (d) Lognormal probability density function of the equivalent shear strength of the LDCR hydrates;
lognormal parameters of the distribution are given in Eqs. (S1) and (S2).

the 36.1%-quantile and the 64.6%-quantile have degrees of utilization larger than or equal to 99%, see
Fig. S3(b). Therefore, if the lognormal distribution of the equivalent shear strength according to Fig. S2(d)
is realistic, then 64.6%− 36.1% = 28.5% of the LDCR hydrates have a degree of utilization larger than or
equal to 99% and will, therefore, fail virtually simultaneously. Given that LDCR hydrates make up 12.3%
of the volume of Biodentine, see Table 8, 28.5%× 12.3% = 3.5% of the volume of Biodentine will fail at
the same time. This does not propose the LDCR hydrates as primary reason for the sudden, well-spread
brittle failure of the mature Biodentine specimens under destructive compressive mechanical testing.
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Fig. S3. Degree of utilization F = |σaxi|/(2C) as a function of the indentation modulus M of LDCR
hydrates; the “+” symbols mark p-quantiles, with values of p given as percentage values.

3 FUNDAMENTALS OF STIFFNESS HOMOGENIZATION

Methods of continuum micromechanics allow for stiffness homogenization of representative volume
elements (RVE) of microheterogeneous materials. The RVEs fulfil the scale separation principle, i.e.
the characteristic size of the microheterogeneities is at least 2 to 3 times smaller than the characteristic
size of the RVE (Drugan and Willis, 1996), and the characteristic size of the RVE is by a factor of 5
to 10 smaller than the characteristic size of the structure containing the RVE and/or the characteristic
length of the external loading imposed on that structure (Kohlhauser and Hellmich, 2013). Inside the RVE,
field equations of linear elasticity are considered. At the boundary of the RVE, uniform strain boundary
conditions are imposed

u(x) = E · x , (S3)

where u denotes the displacement vector, x the position vector, and E the imposed uniform macrostrain
state.

The heterogeneous microstructure of composites is frequently so gracefully built that it cannot be
represented in full detail. As a remedy, the volume of the studied RVE, VRV E , is subdivided into (not
necessarily connected) subvolumes occupied by the different microstructural constituents called “material
phases”:

VRV E =

np∑
i=1

Vi , (S4)

where np denotes the number of material phases and Vi stands for the volume occupied by the ith material
phase, such that fi = Vi/VRV E quantifies its volume fraction. The material phases are selected such that
the matter filling every phase volume Vi is characterized by a uniform elastic stiffness tensor Ci.

Scale transitions are made possible by means of so-called phase strain concentration tensors Ai. They
allow for (i) the macro-to-micro scale transition regarding strains (Hill, 1963), also referred to as strain-
concentration and strain-downscaling:

εi = Ai : E , i = 1, 2, . . . , np , (S5)
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where εi stands for the volume-averaged strain of material phase i, and : stands for a double-contracting
tensor product, and (ii) the micro-to-macro scale transition regarding stiffness Hill (1963), also referred to
as stiffness-homogenization and stiffness-upscaling

Chom =

np∑
i=1

fiCi : Ai , (S6)

where Chom denotes the homogenized elastic stiffness of the microheterogeneous material. However,
because the very details of the microstructure of an RVE are unknown, phase strain concentration tensors
cannot be computed up to analytical precision.

In continuum micromechanics, phase strain concentration tensors are estimated with the help of
auxiliary three-dimensional matrix-inclusion problems (Eshelby, 1957; Laws, 1977). np such problems are
introduced; one for every material phase. The elastic stiffness, the ellipsoidal shape, and the orientation
in space of the ith material phase are assigned to the inclusion of the ith matrix-inclusion problem, see
Fig. S4. The stiffness of the infinite matrices of all these problems, C∞, is equal to a characteristic stiffness

Fig. S4. Auxiliary matrix-inclusion problem: a three-dimensional ellipsoidal inclusion of stiffness Ci is
embedded in an infinite matrix with stiffness C∞; the matrix is subjected to uniform far-field (“remote”)
strains E∞.

of the microheterogeneous material of interest.

• If the material of interest is a matrix-inclusion composite, the stiffness of the infinite matrices of all
auxiliary matrix-inclusion problems is equal to the stiffness of the matrix of the composite of interest.
This leads to so-called Mori-Tanaka schemes (Mori and Tanaka, 1973; Benveniste, 1987).

• If the material of interest is a composite with a highly disordered (= “polycristalline”) arrangement of
the material phases, the stiffness of the infinite matrices of all auxiliary matrix-inclusion problems is
equal to the homogenized stiffness of the composite of interest. This leads to so-called self-consistent
schemes (Zaoui, 2002; Bernard et al., 2003; Dormieux et al., 2006).

The infinite matrices of all auxiliary matrix-inclusion problems are subjected to the same remote strain
state E∞. The latter is linked to the strain E imposed on the RVE of the composite of interest, as explained
next. The strains inside the inclusions of all matrix-inclusion problems are uniform (= spatially constant)
and can be computed analytically

εi = [I+ Pi : (Ci − C∞)]−1 : E∞ , i = 1, 2, . . . , np , (S7)
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where εi is the strain inside the ith inclusion, I the symmetric fourth-order identity tensor, and Pi the Hill
tensor of the ith inclusion, see also Dormieux et al. (2006). It is assumed that the uniform strain in the ith

inclusion is an estimate of the volume-averaged strain of the ith material phase of the composite of interest.
In other words, εi in Eq. (S7) is used as an estimate for εi in Eq. (S5). The volume-averaged strains of the
material phases of the composite of interest, in turn, must fulfill the strain average rule

E =

np∑
i=1

fi εi . (S8)

Inserting εi according to Eq. (S7) into Eq. (S8) and solving the resulting expression for E∞ yields the
following expression for E∞ as a function of E

E∞ =

 np∑
j=1

fj
[
I+ P∞

j : (Cj − C∞)
]−1

−1

: E . (S9)

Insertion of E∞ according to Eq. (S9) into Eq. (S7), and comparison of the resulting expression with
Eq. (S5) yields the following estimate of the phase strain concentration tensors:

Ai = [I+ P∞
i : (Ci − C∞)]−1 :

 np∑
j=1

fj
[
I+ P∞

j : (Cj − C∞)
]−1

−1

. (S10)

Four characteristic features of heterogeneous material have to be know prior to applying Eq. (S10).
These features account for elastic stiffness of the material phases, their shapes, orientations, volume
fractions, and interactions among them. As regards the latter, two distinct types of interactions are
distinguished: polycrystalline and matrix-inclusion type. Polycrystalline interaction, refers to perfectly
disordered arrangement of material phases. This manifests in Eq. (S10) in a way that the C∞ is equal
to stiffness of the homogenized RVE Chom. Matrix-inclusion type interaction considers stiffness of the
infinite matrix C∞ in Eq. (S10) equal to stiffness of the real RVE-related matrix (Zaoui, 2002).
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