
	
  

Supplementary Material 

Review of the m-sequence technique 

An m-sequence is a binary-valued series that, although deterministic, has white-noise-like properties; 
specifically, m-sequences are the shortest, whitest binary sequences with a power spectrum that is 
identically equal for all frequencies up to the Nyquist limit set by the measurement frequency, with 
the exception of a dc term that approaches zero for longer sequences (MacWilliams and Sloane, 
1976). Characterization of a linear time-invariant system is accomplished by subjecting the system to 
a train of impulsive excitations made according to a repeatedly-applied m-sequence, and then 
extracting the impulse response or temporal kernel function from the measured system output by 
processing that relies on the mathematical properties of the sequence. This technique has been 
particularly useful in acoustics (Schroeder, 1979; Borish and Angell, 1982; Rife and Vanderkooy, 
1989), but has also found applications in a range of other fields in recent years, including, in biology, 
behavioral reactions to wide-field visual motion in flies  (Schnell et al., 2014; Theobald et al., 
2010b), reverse-correlation analysis in visual neuroscience (Ringach, 2004), and nonlinear analysis 
(Benardete and Victor, 1994; Victor, 1992). A clear review of the m-sequence method is given by 
(Xiang, 1992) and reviewed in Supplementary material. M-sequences were used, as opposed to white 
noise, because of the binary-nature of them, and because of their relative compactness. As compared 
to white noise, which asymptotically approaches whiteness for longer sequences, the spectrum of an 
m-sequence is deterministically white, with the exception of a near-zero DC term. 

A binary nth-order m-sequence consists of a string of 𝒑 = 𝟐𝒏 − 𝟏 bits in which every n-bit pattern 
except for n consecutive 0’s is represented once without repetition. Such sequences may be generated 
by a feedback shift-register implementation based on so-called primitive polynomials (Golomb, 
1968). Conventionally, a binary (0-1) m-sequence is transformed to a sequence consisting of 1’s and 
-1’s for purposes of system excitation and identification: 
 𝒎𝒋 = 𝟏− 𝟐𝒎𝒋

𝒃, 𝒋 = 𝟎…𝒑− 𝟏 ,   (S1) 

where 𝒎𝒋
𝒃 are the elements of the binary sequence. The arithmetic inverse 

 𝒎𝒋 = 𝟐𝒎𝒋
𝒃 − 𝟏, 𝒋 = 𝟎…𝒑− 𝟏	
   (S2)	
  

of such a sequence is likewise an m-sequence. In addition, any circular shift of an m-sequence (i.e., a 
sequence that commences with some element 𝒎𝒌 other than 𝒎𝟎, following the same order and 
having elements 𝒎𝟎 through 𝒎𝒌!𝟏 appended at the end), as well as order-reversed m-sequences, are 
also m-sequences. For every n > 3 there is more than one distinct m-sequence (that is, apart from 
arithmetic inverses, mirror images, and circular shifts). 

The noise-like properties of the m-sequences manifest in its autocorrelation and cross-correlation 
properties. The circular autocorrelation    𝒎 ⋆𝒎   of a bipolar m-sequence approximates a delta 
function: 

   𝒎 ⋆𝒎:     𝟏
𝒑

𝒎𝒋𝒎 𝒋!𝒌   𝒎𝒐𝒅  𝒑
𝒑!𝟏
𝒋!𝟎 =

𝟏      for    𝒌  𝒎𝒐𝒅  𝒑 = 𝟎
−𝟏 𝒑         for    𝒌  𝒎𝒐𝒅  𝒑   ≠ 𝟎    

or 
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    𝟏
𝒑

𝒎𝒋𝒎 𝒋!𝒌   𝒎𝒐𝒅  𝒑
𝒑!𝟏
𝒋!𝟎 = 𝒑!𝟏

𝒑
𝜹 𝒌 − 𝟏

𝒑
   , (S3) 

where 𝜹(𝒌) is the Kronecker delta. The approximation improves as the order of the sequence 
increases. Additionally, the circular cross-correlation of two distinct sequences, 𝑚!

!  and 𝑚!
!, is small: 

 𝒎𝟏 ⋆𝒎𝟐 :     𝟏
𝒑

𝒎𝒋
𝟏𝒎 𝒋!𝒌   𝒎𝒐𝒅  𝒑

𝟐𝒑!𝟏
𝒋!𝟎 ≈ 𝟎 , (S4) 

where again the magnitude decreases with sequence order. Finally, non-stationarity of m-sequences 
refers to the non-zero sum of a bipolar sequence, i.e.,  ∑𝒋!𝟎

𝒑!𝟏𝒎𝒋 = 𝟏  or  ∑𝒋!𝟎
𝒑!𝟏𝒎𝒋 = −𝟏, depending 

on whether the sequence is defined by (S1) or (S2), respectively. 

The autocorrelation property of m-sequences, along with their whiteness, make them useful for 
estimation of the impulse response of a linear system, as follows. System excitation is effected by 
applying a series of positive and negative input impulses according to the sequence, of fixed 
amplitude and at regular time intervals. The index of the sequence elements corresponds to the 
discrete times of impulse application. For simplicity, we normalize time by the inter-impulse interval 
and system input and output by the amplitude of the applied impulses throughout. 

Consider the application of two successive periods of an m-sequence, and identifying the time origin 
with the start of the second period, i.e., assume that the stimulus commences at time 𝒕 = −𝒑+ 𝟏. 
Then the system output 𝒚(𝒕), which in general is the convolution 𝒚 = 𝒈 𝒕− 𝝉 𝒙(𝝉)𝒅𝝉𝒕

!𝒑!𝟏 	
  of the 
impulse response function 𝒈(𝒕) with the input 𝒙(𝒕), takes the following values at the times 
𝒕 = −𝒑+ 𝟏 … (𝒑− 𝟏) at which the impulses are applied: 
 

              𝒚 −𝒑 + 𝟏 =   𝒈 𝟎 𝒎𝟎  
𝒚 −𝒑 + 𝟐 = 𝒈 𝟎 𝒎𝟏 + 𝒈 𝟏 𝒎𝟎  
                ⋮  
𝒚 𝟎       =         𝒈 𝟎 𝒎𝟎           + 𝒈 𝟏 𝒎𝒑!𝟏 +⋯+ 𝒈 𝒑 − 𝟏 𝒎𝟏   + 𝒈 𝒑 𝒎𝟎  
𝒚 𝟏       =         𝒈 𝟎 𝒎𝟏           + 𝒈 𝟏 𝒎𝟎           +⋯+ 𝒈 𝒑 − 𝟏 𝒎𝟐   + 𝒈 𝒑 𝒎𝟏         + 𝒈(𝒑 + 𝟏)𝒎𝟎  
                ⋮  
𝒚 𝒑 − 𝟏 = 𝒈 𝟎 𝒎𝒑!𝟏 + 𝒈 𝟏 𝒎𝒑!𝟐 +⋯+ 𝒈 𝒑 − 𝟏 𝒎𝟎   + 𝒈 𝒑 𝒎𝒑!𝟏 +⋯+ 𝒈(𝟐𝒑 − 𝟐)𝒎𝟎  
  

Now suppose that the impulse response dies out within the period of a single application of the m-
sequence, i.e., 𝒈(𝒕) ≅ 𝟎 for 𝒕 ≥ 𝒑, such that the terms involving 𝒈(𝒕) at these longer times may be 
neglected in the equations above − i.e., only the terms in the boxed area need be considered. Then the 
equations for the responses during the second period can be written in the compact form: 

𝒚 𝒊 ≅ 𝒈(𝒋)𝒎 𝒊!𝒋   𝒎𝒐𝒅  𝒑
𝒑!𝟏
𝒋!𝟎 , 𝒊 = 𝟎⋯𝒑− 𝟏 , (S5)  

where the integer index 𝒊 has been used in place of 𝒕 to indicate discrete time. The operation 
represented in (S5) can be regarded a discrete circular convolution, and we use the symbol ∗ to 
represent this operator: 𝒚 ≅𝒎 ∗ 𝒈. 

Now consider the circular cross-correlation 𝒖 of the m-sequence itself with the system outputs during 
the second cycle,  𝒖 = (𝟏 𝒑)  𝒎 ⋆ 𝒚 = (𝟏 𝒑)  𝒎 ⋆ (𝒎 ∗ 𝒈). It is well-known that the cross-
correlation and convolution operators commute, i.e.,   𝒎 ⋆ 𝒎 ∗ 𝒈 = (𝒎 ⋆𝒎) ∗ 𝒈, so that by 



Aptekar	
  et	
  al.	
   	
   White	
  Noise	
  Analysis	
  and	
  Fly	
  Vision	
  

	
   3	
  

applying (S3), the value of 𝒖 at time 𝒊 is found to be: 

𝒖(𝒊) = 𝒑!𝟏
𝒑
𝒈 𝒊 − 𝟏

𝒑
𝒈(𝒋)𝒑!𝟏

𝒋!𝟎 . (S6) 

Thus, if excitation according to an m-sequence is applied for multiple cycles, and the system outputs 
for times greater than the settling time of the impulse response are considered, then the cross-
correlation of the m-sequence with the response values yields an estimate of the impulse response 
itself. This estimate contains a dc error (proportional to the asymptotic value 𝒈(𝒋)𝒑!𝟏

𝒋!𝟎  of the step 
response) that decreases with sequence length. In order to obtain an estimate with the same degree of 
noise rejection, a direct approach to measuring the impulse response – i.e., applying a single impulse, 
measuring the response out to time 𝒑, repeating this experiment 𝒑 times and then averaging the 
results together – would require 𝒑/𝟐 times as long as two applications of the m-sequence. This 
efficiency is what makes the technique valuable for system identification in flying flies, for which 
experimental times are limited and noise rejection is important. 

Finally, suppose that during an experiment the system output is sampled at a frequency some integer 
𝑵 times greater than the rate of application of image steps. The same cross-correlation methodology 
can be applied to estimate the impulse response if the m-sequence is padded with 𝑵− 𝟏 zeros 
between each non-zero element in the sequence.  Note that the upper frequency bound for this 
method of system identification is therefore set by the Nyquist limit associated with the recording 
device’s sampling rate, given that the m-sequence is transmitted to the fly as a set of near-
instantaneous impulses each followed by a finite dwell period. 

 
Fig. S1  The STAF method captures animal-to-animal variation in behavior and is well-conserved 
across animals. This permits robust statistical comparison between groups. (A) Mean FM STAF for 
N=16 flies. (B) PC1 for the FM-STAF. (C) Plot of the goodness of fit for the top 40 principle 
components. Note that PC1 yields >60% higher fit than the next ranking PC. (D) FM-STAFs 
estimated from single flies. 

Matlab code for download. Nine Matlab m-files are available for download, and must be put on the 
Matlab Path. Please refer to Reiser and Dickinson (2008) for details on construction and 
programming of electronic visual displays. Each m-file is annotated with comments. 
“make_6_wide_strip_patterns.m” builds the pattern files to display on the LED display, with each of 
48 panels individually addressed (refer to pattern_map within the script for the spatial layout of the 
address scheme). “make_mseq_functions” produces the m-sequence stimuli to run the experiments. 
“make_Pattern_FigGrnd.m” builds a related series of display patterns to measure Figure STAF and 
Ground STAF (Fox et al. 2014). “STAF_Experiment” runs the experimental protocol, and the 
remaining scripts (fMAKE_STAF.m, fGet_STAF.m, and fPrint_STAF.m) are functions called 
therein.  


