
Supplementary Material for
“Microscopic Reversibility and Emergent Elasticity in
Ultrastable Granular Systems”

1 CALCULATION OF Cijkl(θ) IN THE LONG-WAVELENGTH LIMIT

1.1 The rotated reference frame x′y′

As mentioned in the main text, we find that it is most convenient to examine the stress correlations in a
frame x′y′ that is rotated by π/4 clock-wisely from the original xy frame. We express everything in this
rotated frame. We show in Fig. S1(a) a polarized image in the x′y′ frame. The axes for the original xy
directions are also plotted.

1.2 Construct stress fields

Following the procedure detailed in Ref. Nampoothiri et al. (2020), we first define a particle-scale stress
tensor for each individual disc. For the gth disc, we define

σ̂g =
1

Ag

zg∑
k=1

rk ⊗ fk, (S1)

where Ag is the Voronoi area for the gth particle, rk and fk are the branch vector and contact force vector
corrspond to the kth contact, and the summation of k goes over all contacts on the gth particle.

To construct a stress field σij , where i and j can be either x′ or y′, we let σij(x′, y′) = σ̂g,ij if (x, y)
belongs to the Voronoi cell of particle g. Figure S1(b) shows the constructed σy′y′ field for the state shown
in Fig. S1(a).

1.3 Calculate the Fourier transformation of stress fields

To avoid complications introduced from the system boundaries, we consider three square regions of
interest (ROIs) as shown in Fig. S1(b). Each ROI has a side length L = 16ds where ds is the diameter of
the smaller disc.

For each ROI stress field σij , we first calculate the deviation from the mean

δσij(x
′, y′) = σij(x

′, y′)− ⟨σij⟩, (S2)

where ⟨·⟩ represent a spatial average. We then calculate the Fourier transform of δσi′j′ as following

δ̃σij(q) =
1

2π

∫
δσij(r)e

−iq·rdr (S3)

In practice, we perform the discrete Fourier transformation

δ̃σij(qx′ , qy′) =
1

2π

N∑
n=1

N∑
m=1

δσij(n∆x′,m∆y′)e−iqx′n∆x′e−iqy′m∆y′∆x′∆y′, (S4)
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Figure S1. (a) The plolarized image for an example ultrastable state formed by γI = 0.147 and δγ = 0.95%.
The direction of axes are sketched. (b) The continuous stress field σy′y′ constructed from the particle-scale
stress tensors for the state shown in (a). The three regions of interest (ROI) are sketched. (c-e) shows
zoom-in versions of the three ROIs in (b). (f-g) shows the correlation functions Cy′y′y′y′ calculated from
the stress fields in (c-e) respectively. (i) The correlation function for the state in (a) obtained by averaging
the correlation functions shown in (f-g). The color scales in (c-e) are the same as in (b). The color scales in
(f-h) are the same as in (i). Note that L = 16ds where ds is the diameter of the smaller disc. L is the side
length of the square ROIs.

where ∆x′ = ∆y′ = tds/2 and t = 0.81 is a constant. We have tested that using a smaller t gives similar
results. N∆x′ = N∆y′ = L that is the side length of the ROIs.

1.4 Calculate the Fourier transform of the correlation functions

The stress correlation functions in the Fourier space for a certain packing is calculated by

Cijkl(q) = Cijkl(qx′ , qy′) = δ̃σij(qx′ , qy′)δ̃σkl(−qx′ ,−qy′). (S5)
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Figure S2. (a) The ensemble-averaged correlation function Cy′y′y′y′(q) from 30 original shear-jammed
states with averaged pressure p = 8 ± 0.28 N/m. The two black dotted circles have radii 2π/16ds and
2π/6ds. The two white lines form an angle π/9, within which the radial functions Cy′y′y′y′(|q|) shown
in (b) are calculated. (b) The radial dependence of the correlation functions for ensembles of original
shear-jammed states with different stress states. The black curve corresponds to the function shown in (a).
(c) The angular function Cy′y′y′y′(θ) for the same ensemble shown in (a) calculated by averaging radial
parts within the regime between the two black dashed lines in (b) (black circles) and within the regime
between the two red dashed lines in (b) (red triangles).

For each packing, we first calculate Cijkl for the three ROIs, and the stress-stress correlation function
Cijkl for this state is obtained by averaging over the three ROIs. Figure S1(f-h) plots the calculated Cy′y′y′y′

for the three ROIs as shown in (c-e), while the final result is shown in (i) which is obtained by averaging
the three functions shown in (f-h).

1.5 Calculate the ensemble averaged correlation functions

After obtaining the correlation function Cijkl(q) for all states. We calculate the ensemble-averaged
correlation functions for states with similar stress states. The final result is

Cijkl(q) = ⟨Cijkl(q)⟩, (S6)

where ⟨·⟩ represents ensemble average. In the main text, we always consider the ensemble-averaged
correlation functions. Figure S2(a) plots the ensemble averaged correlation function Cy′y′y′y′ over 30
different packings of original shear-jammed states, which appears more smooth than correlation functions
obtained from individual packings such as the one shown in Fig. S1(i).

1.6 Identify the continuum limit using the radial dependence of the correlation functions

The Vector Charge Theory of Granular Mechanics (VCTG) Nampoothiri et al. (2020, 2022) predicts
features of the correlation functions in the long-wavelength limit (|q| → 0). To compare to the theory, we
need to identify the range of |q| where the system can be regarded to be in the long-wavelength limit. Thus,
we examine the radial dependence of the correlation functions in our systems and focus on the regime
where Cijkl does not depend on |q|.

As examples, we consider ensembles of original shear-jammed states. We plot Cy′y′y′y′(|q|) along θ = π
direction in Fig. S2(b) for ensembles with different stress states. In practice, these curves are averaged
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from angular direction θ ∈ (π − π/18, π + π/18). The black triangle curve corresponds to the correlation
function shown in (a). The data with |q| < 2π/L is not of our interest. All C(θ) data shown in the main
text are obtained by averaging over |q| between 2π/16ds and 2π/6ds, as marked by the two black dashed
lines in Fig. S2(b). In this regime, Cy′y′y′y′ roughly display a plateau expect perhaps near the system size
(|q| ≈ 2π/16ds) where it shows a clear growth. A similar feature was carefully examined in Ref. Lemaı̂tre
et al. (2021) and was attribute to the history-dependent nature of frictional contact forces. The plateau is
perhaps better defined in the regime between 2π/10ds and 2π/4ds as marked by the two red dashed lines
in Fig. S2(b). We find that averaging in the regime between the two black dashed lines or between the
two red dashed lines do not lead to drastically different angular functions Cy′y′y′y′(θ). For example, the
black and red curve in Fig. S2(c) are correlation functions for same ensemble as shown in (a) whose radial
parts are averaged in the regime between the two black dashed lines and in the regime between the two red
dashed lines respectively. It appears that the angular dependence of the two curves remain almost the same.

1.7 Calculate the angular dependence of the cross-correlation functions

After identifying the range of |q| where C(q) displays a plateau, we calculate the angular functions C(θ)
by averaging the radial parts in the plateau regime. In the main text, all C(θ) curves are calculated by
averaging the radial parts in the regime between the two black dashed lines in Fig. S2(b).
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