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1 Supplementary Figures and Tables 

 

Figure S1: 𝝉(𝒒) versus wavevector 𝒒 evaluated over the entire 𝒒 range over which 

corresponding 𝑫(𝒒, 𝜟𝒕) curves are fit.  

Figure S2: Stretching exponents 𝜸(𝒒) determined from fits to 𝑫(𝒒, 𝜟𝒕) and plotted for all 𝒒 

values used to determine the power-law dependence of 𝝉(𝒒). 

Figure S3: van Hove distributions of particle displacements in the 𝒙- and 𝒚- directions for all 

composites. 

Figure S4: van Hove distributions for 11 individual measurements for 𝝓𝑨 = 𝟏. 
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Figure S1: 𝝉(𝒒) versus wavevector 𝒒 evaluated over the entire 𝒒 range over which corresponding 

𝑫(𝒒, 𝜟𝒕) curves are fit. Data shown is the same as in Fig 5B but for an extended range 𝑞 = 0.16 −
16 μm−1. Dashed and dotted lines correspond to ballistic and diffusive scaling exponents 𝛽 = 1 and 

2, respectively. To determine scaling behavior of composites, we evaluate 𝜏(𝑞) for 𝑞 = 1 − 3.9 μm−1 

over which power-law behavior is observed for all composites. The non-physical upticks in 𝜏(𝑞) for 

𝑞 > 3.9 μm−1 are due to the optical resolution of our microscope. While the theoretical resolution limit 

is 𝑞 ≃ 10 μm−1 with an objective of NA=1.0, non-ideal imaging conditions, such as imaging across a 

capillary tube which has a refractive index not perfectly matched to that of the sample, reduces this 

limit to ~4 μm−1 in our setup. In the low-𝑞 limit, the unphysical rollovers and plateaus in some of the 

data are due to a combination of the image size, the maximum lag time we probe, and noise. We analyze 

256×256 square-pixel images with a pixel size of ~0.1 μm, setting a minimum of 𝑞 ≃ 2 μm−1. 

However, we are further limited in certain cases by the accessible time scales. Namely, density 

fluctuations at small 𝑞 values are expected to slowly decay, and the maximum ∆𝑡 over which we fit 

𝐷(𝑞, 𝛥𝑡) is ~100 s, above which the data is prohibitively noisy to accurately fit due to low statistics.  
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Figure S2: Stretching exponents 𝜸(𝒒) determined from fits to 𝑫(𝒒, 𝜟𝒕) and plotted for all 𝒒 

values used to determine the power-law dependence of 𝝉(𝒒). 𝛾(𝑞) values for all composites are 

approximately 𝑞-independent, validating our power-law analysis of 𝜏(𝑞). Averaging over 𝑞 for each 

composite yields the data shown in Fig 5G. 
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Figure S3: van Hove distributions of particle displacements in the 𝒙- and 𝒚- directions for all 

composites. van Hove distributions 𝐺(𝛥𝑥, 𝛥𝑡) (top) and 𝐺(𝛥𝑦, 𝛥𝑡) (bottom) of particle displacements 

𝛥𝑥 and 𝛥𝑦, measured via SPT, for lag times Δ𝑡 = 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 5, 10, 15 𝑠 denoted by the 

color gradient going from light to dark for increasing Δ𝑡. Each panel corresponds to a different 

composite demarked by their 𝜙𝐴 value with color-coding as in Fig 3. Data shown is the same as that 

in Fig 3A separated into 𝑥- and 𝑦- direction distributions. For reference, 𝑥- and 𝑦- directions correspond 

to the narrow and long dimensions of the capillary sample chamber, respectively. 
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Figure S4: van Hove distributions for 11 individual measurements for 𝝓𝑨 = 𝟏. van Hove 

probability distributions 𝐺(𝛥𝑥, 𝛥𝑡), 𝐺(𝛥𝑦, 𝛥𝑡), and 𝐺(𝛥𝑑, 𝛥𝑡) (from top to bottom) for particle 

displacements 𝛥𝑥, 𝛥𝑦, 𝛥𝑑 = 𝛥𝑥 ⋃ 𝛥𝑦  for each measurement of the 𝜙𝐴 = 1 composite. Each plot 

displays distributions for Δ𝑡 = 2, 5, 15 𝑠 with the dashed vertical line demarking zero displacement. 

The net direction of motion for each trial, positive or negative, is indicated in the upper right as + or -.  

𝐺(𝛥𝑥, 𝛥𝑡) and 𝐺(𝛥𝑦, 𝛥𝑡) distributions are primarily in the positive and negative directions, 

respectively, with 𝐺(𝛥𝑦, 𝛥𝑡) distributions displaying relatively larger deviations from zero. 
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