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I. SUPPLEMENTARY MATERIAL

A. Semi-analytical approach to a system of single
tracks

The rate equations proposed in this work describe
reactive oxygen species (ROS) aggregation and forma-
tion of non-reactive oxygen species (NROS) agglomer-
ates such as transformation of a pair of ·OH to stable
compounds such as H2O2 or transient and metastable
complexes of ·OH· · · ·OH. We introduce two dynamical
variables u(~r, t) and v(~r, t) and propose a system of cou-
pled reaction-diffusion equations, denoting u =[·OH] and
v = [H2O2]. These variables represent fast (ROS) and
slow (NROS) moving species.

Conversion of ROS (·OH) to NROS (H2O2) and vice
versa can be described by the following rate equations

∂u

∂t
= G+ ~∇ ·

(
Df (~r)~∇u

)
− k1u+ k2v − 2k3u

2 − k12uv,

(1)

∂v

∂t
= k1u− k2v + k3u

2. (2)

Here G(~r, t) and Df represent the dose rate and diffu-
sion constant of the fast moving species (neglecting the
diffusion of slow moving species), and k1, k2, k3, k12 are
reaction rate constants.

For a homogenous and uniform system, Df is a con-
stant, hence in Eq. (1) we can substitute Df∇2u for
∇ · (Df (~r)∇u). In the following, we calculate analytical
solutions of Eqs. (1) and (2), considering Df a constant.
However, for random networks considered in this work,
Df is a function of position, ~r. In this case we calculate
solutions of Eqs. (1) and (2) numerically.

Eqs. (1) and (2) are generalizations of ROS-NROS
rate equations introduced by Eqs.(1) and (2), in Ref. [1],
where the “non-linearities” in the rate equations have
shown the dominance of NROS at UHDRs. Note that in

the current work, we have added thermal diffusion and
steady state decay terms (k1 and k2) where in the absence
of linear terms, Df = k1 = k2 = 0, we can recover Eqs.
(1) and (2) in Ref. [1] (after substituting the variables
N1 and N2 for u and v).

The numerical values of the rate constants are available
in MC codes such as TOPAS n-Bio [2], used in our related
recent study [3]. For example, the reaction rate constant
of ·OH+H2O2 → ·HO2+H2O is given by k12 = 0.0023×
1010/M/s = 0.023/M/ns. Similarly the reaction rate
constant of ·OH + ·OH → H2O2, described by Eq. (2),
d[H2O2]/dt = k3[·OH]2, is k3 = 0.475 × 1010/M/s =
4.75/M/ns. In the absence of non-linearities (k3 = k12 =
0) and zero diffusion, the linear rate constants, k1 and k2,
can be determined from a steady-state condition where
u and v are both constant so du/dt = dv/dt = 0, thus
v = (k1/k2)u where G = 0.

With regards to differences with our latest work, pre-
sented in Ref. [3], we have omitted the labels for the
track indices in u and v as the explicit inclusion of in-
dices is convenient for the description of weak inter-track
limit where the analytical solutions and the overlap in-
tegrals can be calculated perturbatively. Nevertheless,
to recover the rate equations in Ref. [3], we apply the

following transformation u =
∑Ns

i=1 ui in Eq. (1) where
Ns denotes the number of particle tracks, identical to
the number of particles in a beam. Substituting this
transformation results in partitioning Eq. (1) into Ns in-
dependent rate equations. A one-to-one correspondence
between the variables in this model and in Ref. [3] is the
following: ui → ci, Df → α, k1 → ks and 2k3 → kr. The
rest of the parameters and variables, k2, k12 and v were
omitted in Ref. [3].

Therefore, the rate equations presented in the current
study, Eqs. (1) and (2), are more general than their
counterparts in Ref. [3] and the solutions at the limit of
weakly and/or strongly correlated tracks can be calcu-
lated non-perturbatively by numerical approaches such
as finite difference and/or elements.

An interesting special limiting case of negligible k1, k2,
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k3, and k12 corresponds to an asymptotic solution of the
Gaussian distribution function for u at t >> 0 as stud-
ied in Ref. [3]. Note that we use slightly different initial
conditions such that at t = 0 a constant distribution of
ROS inside a cylinder with radius w is considered, where
u = u0 within r ≤ w and zero otherwise, and v = v0 = 0
everywhere. w is the width of a particle track at initial
time t = 0 and it can be extracted from MC simulations
of track structures of particles. w is a parameter that
depends on particle LET. The advantage of using this
initial condition would be omission of parameter τ0 in-
troduced in Ref. [3] in favor of the initial track width w.
Geometrically, tracks with this boundary condition do
not suffer from a spurious Gaussian tail at initial time.

At the weak interaction limit we disregard the non-
linear terms to calculate analytical solutions. We further
treat the non-linear terms perturbatively and calculate
the corrections to linear solutions. Note that the analyt-
ical solutions at the strong limit of non-linearities have
been calculated in Ref.[1]. Thus, we may perform an
interpolation between weak and strong interaction lim-
its to calculate the solutions at the intermediate inter-
acting limit where both linear and non-linear terms are
comparable. The rest of this presentation is devoted to
calculating the solutions of these equations.

To handle the time dependence in the partial differen-
tial equations we perform a Laplace transformation

u(s, ~r) =

∫ ∞
0

dtu(~r, t)e−st, (3)

with the inverse Laplace transformation, given by

u(~r, t) =
1

2πi

∫ γ+i∞

γ−i∞
dpu(s, ~r)est. (4)

Insertion of Eq. (3) to the time-derivative term in Eqs.
(1) and (2) yields∫ ∞

0

dt
∂u(~r, t)

∂t
e−st = −u(0, ~r) + su(s, ~r), (5)

where u(0, ~r) can be specified by the initial condition for
u at t = 0, u(0, ~r) = u0(~r). Linearizing the rate equations
and applying the Laplace transformation, we treat the
non-linear terms perturbatively

su(s, ~r) = G(s) +Df∇2u(s, ~r)

− k1u(s, ~r) + k2v(s, ~r) + u(0, ~r) (6)

and

v(s, ~r) =
k1u(s, ~r) + v(0, ~r)

s+ k2
(7)

We can now replace Eq.(7) in Eq.(6) and reduce the sys-
tem of coupled differential equations into a single equa-
tion in terms of u, thus

∇2u(s, ~r) − q2u(s, ~r) =

− 1

Df

[
k2v(0, ~r)

s+ k2
+
(
G+ u(0, ~r)

)]
(8)

where

q2(s) =
s

Df

(
1 +

k1
s+ k2

)
. (9)

Applying the initial conditions everywhere

u(0, ~r) = v(0, ~r) = 0 (10)

we find

∇2u(s, ~r)− q2u(s, ~r) = −G (11)

Alternatively, we can start the time-evolution of the
track expansion by applying the initial conditions right
after entrance of the single track where we can consider
G = 0, from that time on. Here the track structure
insertion to the differential equations can be performed
through the boundary conditions u(t = 0, ~r) = u0θ(w −
r), and v(t = 0, ~r) = v0θ(w− r), hence Eq. (8) simplifies
to

∇2u(s, ~r)− q2u(s, ~r) = −V (s)θ(w − r), (12)

where

V (s) =
u0
Df

[
1 +

k2
s+ k2

v0
u0

]
. (13)

Here θ(w − r) is a Heavyside function such that θ = 1
if r ≤ w and zero, otherwise. Eq. (12) is of the general
form given in Carslaw and Jaeger [4] for heat conduction
between composite cylinders. For r ≤ w the solutions of
Eq. (12) are

u<(s, ~r) =
V

q2
− α1(s)I0(qr), (14)

v<(s, ~r) =
k1

s+ k2
u<(s, ~r) +

v0
s+ k2

. (15)

And for r > w

u>(s, ~r) = α2(s)K0(qr) (16)

v>(s, ~r) =
k1

s+ k2
u>(s, ~r) (17)

where α1(s) and α2(s) are boundary matching parame-
ters. They are functions of the Laplace transform vari-
able s and are determined by matching the boundary
conditions across r = w. At r = w, the continuity of the
diffusion equation and their first derivatives imply

u<(s, w) = u>(s, w), (18)

and

u′<(s, w) = u′>(s, w), (19)
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where u′(s, w) = du(s, r)/dr at r = w. Insertion of the
boundary conditions, Eqs. (18) and (19), in Eqs. (14)
and (16) solves for α1 and α2

α1(s) =
V

q2
1

I0(qw) +K0(qw)I1(qw)/K1(qw)
, (20)

and

α2(s) = α1(s)
I1(qw)

K1(qw)
. (21)

Note that α1 and α2 are explicit functions of s. This is
important in calculating the inverse transform of u and
v.

The interaction / non-linear terms must be treated per-
turbatively because upon Laplace transformation they
turn to a non-local integral in s. For example applying
Laplace transform over u2 turns into an integral equation
with two interacting fields through a propagator∫ ∞

0

dtu2(~r, t)e−st =
1

(2πi)2

∫ i∞

−i∞
ds′u(~r, s′)∫ i∞

−i∞
ds′′u(~r, s′′)

θ(s− s′ − s′′)
s− s′ − s′′

.

(22)

In a weak non-linear coupling limit, we employ a per-
turbative approach to the non-linear terms in Eqs. (1
and 2)

ũ = u+ u′, (23)

and

ṽ = v, (24)

where u and v are the solutions of the linear equations of
Eqs. (1 and 2) where k3 = k12 = 0. An equation for u2
can be derived after substituting Eqs. (23 and 24) into
Eqs. (1 and 2)

u′ = − k3u
2

k1 + 2k3u
(25)

B. Useful identities

Useful identities (see page 375, Eq. (9.6.15), Ref. [5])

Iν(z)Kν+1(z) +Kν(z)Iν+1(z) =
1

z
, (26)

thus we find

I0(qw)K1(qw) +K0(qw)I1(qw) =
1

qw
(27)

C. Fourier transform

Fourier transform

f(ω) =
1√
2π

∫ ∞
−∞

dtf(t)eiωt (28)

Inverse Fourier transform

f(t) =
1√
2π

∫ ∞
−∞

dωf(ω)e−iωt (29)

The following identity will be used for the inverse Laplace
transform expression

f(t′) =
1

2π

∫ ∞
−∞

dωe−iωt
′
∫ ∞
−∞

dteiωtf(t) (30)

The delta-function

δ(t− t′) =
1√
2π

∫ ∞
−∞

dωe−iω(t−t
′) (31)

δ(ω − ω′) =
1√
2π

∫ ∞
−∞

dtei(ω−ω
′)t (32)

D. Laplace transform

Laplace transform

f(s) = L[F (t)](s) =

∫ ∞
0

dtF (t)e−st (33)

Inverse Laplace Transform – Bromwich Integral

F (t) = L−1[f(s)](t) (34)

We define (see page 908 in Ref. 6)

F (t) = eγtG(t) (35)

Note t ≥ 0. If F (t) diverges as eαt, it is required γ to
be greater than α. From Fourier transform, Eq.(30) we
have (t → t′ and t′ → t and considering only a domain
of positive time, t ≥ 0):

G(t) =
1

2π

∫ ∞
−∞

dωeiωt
∫ ∞
0

dt′e−iωt
′
G(t′). (36)

Introducing a complex variable s = γ+ iω, and replacing
iω = s− γ, and ds = idω (assuming γ is a constant), in
Eq.(36) we find

G(t) =
1

2πi

∫ γ+i∞

γ−i∞
dse(s−γ)t

∫ ∞
0

dt′e−(s−γ)t
′
G(t′).(37)

Introducing F (t) = eγtG(t)

G(t) =
1

2πi

∫ γ+i∞

γ−i∞
dse(s−γ)t

∫ ∞
0

dt′e−st
′
F (t′)

=
1

2πi

∫ γ+i∞

γ−i∞
dse(s−γ)tf(s). (38)
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FIG. 1: Numerical solution of u>(~r, t) calculated by inverse
Laplace transform (red dots) and a Gaussian function (solid
line), given by Eq. (40), are shown. At large distances, i.e.,
r >> w, the Gaussian is an approximate fit to u>(~r, t). The
numerical values of the parameters used in the integration to
produce this figure are w = 1, r = 3, Df = 1, k1 = k2 = k3 =
k12 = 0.

Finally the integral expression for the inverse Laplace
transform is given by

F (t) = G(t)eγt =
1

2πi

∫ γ+i∞

γ−i∞
dsestf(s)

= L−1[f(s)](t). (39)

E. Appendix: Gaussian solutions

In the limit of ideal diffusion (in the absence of all re-
action rates) the asymptotic solutions of u>(r, t) for large
arguments, r >> w, follow Gaussian distributions multi-
plied by the initial number of chemical species, πw2u0

u>(~r, t) =
πw2u0
4πDf t

e
− r2

4Dft . (40)

This can be obtained from calculation of inverse Laplace
transform of u>(s, r) = α2(s)K0(q(s)r)

L−1[u>(qr)](t) =
1

2πi

∫ γ+i∞

γ−i∞
dsestu>(s, r)

=
1

2πi

∫ γ+i∞

γ−i∞
dsestα2(s)K0 (q(s)r) .

(41)

Calculation of this integral requires numerical integration
of Eq.(41), recalling the explicit dependence of α2 and q
on Laplace transform variable, s. We have performed this
calculation and verified validity of Eq.(40) as illustrated
in Fig. (1). In this figure, the numerical integration of
the inverse Laplace transform of u>(~r, t), and fitting to
a Gaussian PDF as given in Eq. (40) are plotted.

FIG. 2: Plot of the relative diffusion constant in a disordered
(Df,d) and ordered (Df ) square lattice as a function of p.
By definition, Df is the diffusion constant of a perfect lattice
with p = 1. The ideal (ordered) square lattice consists of
500×500 sites. An abrupt transition in Df,d at the percolation
threshold pc ≈ 0.59 is clearly seen.

F. Appendix: Random walk on a finite size
disordered / porous system

In this subsection of the Appendix, we present a sim-
plistic percolation model to calculate the diffusion con-
stant in a disordered system as a function of site occu-
pation probability, p, introduced in the main text. We
formulate our computational approach to be consistent
with the boundary conditions considered in this work,
i.e., diffusive propagation of chemical species generated
by passage of a particle in a super-cluster of connected
points. Fig. 1 (in the main text) schematically presents
a super-cluster, which consists of many smaller clusters.
In the following, we reconstruct a model calculation for
diffusion through a disordered / porous system based on
the random walk on a two-dimensional lattice with lattice
constant a.

Considering the time evolution of the diffusion front of
a single track radially in a cylindrical geometry, we de-
note q and 1− q the probabilities in taking a single step
parallel and anti-parallel to r̂, corresponding to outward
and inward directions, respectively. We have assumed
the radial motion in the absence of external torque (e.g.,
zero external magnetic field) and vortex flow of chemical
species or scattering centers that convert the ideal sys-
tem to disorder. Thus, although the present dynamical
system looks effectively one-dimensional, it is inherently
a two-dimensional problem. We therefore parameterize
the net displacement relative to the center of the coordi-
nate where the primary particle crosses perpendicularly
(e.g., center of plane in Fig. 1 (in the main text) with a
single track in the middle), by ~r = mar̂ in the limit of
large displacements, m >> 1. Here m is considered an
integer number representing the net displacement steps
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along the radial direction, r̂.
The probability of finding the walker at displacement

m after N -trials is given by the binomial distribution
function

BN (m) =
N !

N+m
2 !N−m2 !

q
N+m

2 (1− q)
N−m

2 . (42)

Hence, the first two statistical moments of the displace-
ment can be calculated easily by r = am = aN(2q − 1),

and r2 = a2m2 = a2(4Nq(1 − q) + m2), thus ∆r =

2a
√
Nq(1− q) is the root-mean-square of the displace-

ment. For an unbiased random walk, q = 1/2, hence

r = 0, r2 = Na2, and ∆r = a
√
N . Considering t, the

simulation time, t ∝ N , we find ∆r ∝ t1/2, where ∆r
increases indefinitely with time with the power-law expo-
nent, β = 1/2, which is the hallmark of random growth.

Note that on a square lattice where we perform our
computation to calculate the diffusion constant of a dis-
ordered system, where the cylindrical symmetry is broken
down because of the presence of scattering centers and
molecular heterogeneities, m splits into a pair of integer
numbers: m = (mx,my), a vector in cartesian coordi-
nates, representing the net displacement steps parallel to
r̂-direction. In this case, BN in Eq. (42) would have been
partitioned into products of two disjoint probabilities in
terms of mx and my. However, for simplicity and with-
out loss of generality we disregard splitting BN into two
mx and my components and consider m a single param-
eter (an integer number) that describes the dynamics of
random walk.

As illustrated in Fig. 1, in the main text, (considering
a single cylindrical track in the middle of the plane), a
random walker starting from the middle of a discretized
plane (the lattice) can reach the boundaries in a finite
time. By taking a large number of steps, N >> 1, the
binomial probability, Eq. (42) can be approximated with
a symmetric Gaussian distribution function

BN (m) ≈ BN (m) exp

(
− (m−m)2

2Nq(1− q)

)
. (43)

Considering an unbiased random walk with a single
step probability q = 1/2, hence m = 0, we simplify Eq.
(43). In terms of continuous radial displacement, r =
ma, we transform BN (m) in Eq. (43) to a normalized
diffusion equation identical to the distribution function,
given by Eq. (3), in the main text

BN (r) =
1

4πDf t
exp

(
− r2

4πDf t

)
. (44)

Here Na2/4 = 2πDf t where the simulation time, t,
is proportional to the total number of trials / steps,
N . Equivalently we identify expressions for the diffu-
sion constat, Df = Na2/(8πt), and the diffusion length,

` = a
√
N/4π using Einstein’s relation, ` =

√
2Df t.

The random walker can reach the boundaries of the
system if the following condition ` = L = r = ma

is satisfied. Here L represents the finite dimension of
the system / super-cluster. Transforming this condi-
tion to an equivalent condition for the diffusion con-
stant, Df = `2/2t = L2/2t, reveals linear proportion-
ality of Df to the planar area, L2 and the number of
points covering the area, connecting the center of coor-
dinates to the boundaries which can be calculated sim-
ply by (L/a)2 = πN2

r where Nr is number of radial
points. In cartesian coordinates analogue of Eq.(44),
(L/a)2 = Nx × Ny where Nx and Ny are the number
of points spanning along the x and y axis.

In a d-dimensional disordered system, where the molec-
ular heterogeneities behave effectively like scattering cen-
ters, some of the lattice points randomly block the diffu-
sion channels with probability p. Excluding the hetero-
geneity volumes (holes in Fig. 1 (in the main text) from
the embedding volume, Ld, effectively lowers the diffu-
sive volume, Ld, to Lf with f < d, the fractal dimension
of the disordered / porous system. In our planar geome-
try, d = 2 is the dimension of Euclidian space embedding
the disordered / porous surface with fractal dimension,
f < 2 that is a function of p.

Thus the diffusion constant in the disordered system,
Df,d, can be expressed linearly proportional to Df mul-
tiplied by a scaling factor, Lf−d < 1. More explicitly,
Df,d/Df = Lf/Ld. In computational modeling of perco-
lation theory, it is convenient to calculate Lf/Ld through
a probability, P (p, L) = Np/(L/a)2, where Np is the
number of occupied points (with occupation probabil-
ity p) enclosed by the boundaries of clusters subjected
to a constraint that the boundaries of the clusters reach
the boundaries of super-clusters. P (p, L) can be inter-
preted as the probability of a single site to belong to a
percolating cluster. The lower p, the lower P (p, L) and
Df,d, hence the higher number of steps (simulation time)
a random walker must take to cross the super-cluster.
P (p, L) continuously drops to zero as a function of p. In
the vicinity of the percolation threshold, p = pc, below
which there would be no clusters connecting the oppo-
site boundaries of the super-cluster, P (p, L) and Df,d

vanish simultaneously. This explicitly implies a lower
diffusion constant in a disordered system relative to a
perfect system as a function of p. As shown in Fig. 2,
Df,d/Df decreases with decreasing p and drops abruptly
to zero below pc ≈ 0.59 for a 500×500 square lattice. For
the two-dimensional system illustrated here it has been
shown that in an infinite lattice the percolation threshold
is pc = 0.5927 [7]. To generate Fig. 2 we have developed
an in-house code using image processing toolbox in mat-
lab.

At p = 1 there is only one percolating cluster, iden-
tical to the super-cluster with V = Ld, volume of a
d-dimensional hypercube. With a decrease in p, the
population of non-percolating clusters and voids among
clusters increases. It would be useful to partition the
total volume, V , into volumes enclosed by the bound-
aries of percolating clusters, Vp, non-percolating clusters,
Vnp, and the volume of empty space (voids), Ve. Thus
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V = Vp + Vnp + Ve. In non-percolating clusters, a lim-
ited diffusion can be anticipated only within a finite size
spanning over the size of non-percolating clusters, com-
pared to unlimited diffusion length at the limit of large
systems, i.e., L → ∞, whereas Ve represents the volume
of porous space through which the diffusion is forbidden.

We therefore express the probabilities in terms of frac-
tion of these volumes. For example, p = (Vp + Vnp)/V
and 1−p = Ve/V represent fractions of occupied and un-
occupied sites in an ensemble of clusters, sampled out of
a pool of random copies and various site-configurations
of a super-cluster. Similarly, a fraction of percolating
volume yields P (p, L) = Vp/V = Lf/Ld.

G. Appendix: Ensemble average and restoration of
translational and rotational symmetries

The underlying symmetries of the diffusion equation
in a uniform medium exhibits translational and rota-
tional invariance. The solutions, e.g., two-dimensional
Gaussians, are cylindrically symmetric, as calculated in
this Appendix and depicted in Fig. 1. In the presence
of random scattering centers, the system is disordered,
and translational and rotational symmetries are violated.
The Gaussian distribution functions are no longer solu-
tions of the stochastic partial differential equations where
the diffusion constant varies randomly as a function of
position. In a specific random copy of a disordered sys-
tem, one needs to calculate the solutions of the stochas-
tic diffusion equation numerically, prior to performing
ensemble averaging over various copies of random scat-
tering centers, as we have performed and discussed in
Fig. 2.

In percolation theory, Sec. I G, we have introduced an

approach and calculated the mean diffusion constant by
Df,d/Df = P (L, p). Because P (L, p) is the probability
of percolating clusters, it represents volumes of percolat-
ing clusters over the volume of a super-cluster (Ld) in
an statistical sense. It has been calculated by counting
the number of points encompassed within a closed-loop
constructed out of the boundaries of a specific percolat-
ing cluster, averaged over all percolating clusters. Thus,
as shown in Fig. 2, Df,d represents a scalar that is only
a function of p. All details of exact positions on the
scattering centers are washed out, hence, there is no spa-
tial dependence on the position of the scattering sites on
Df,d, simply because we have performed an averaging
over random copies of scatting center positions.

Substituting Df,d for Df in the standard diffusion
equation, naturally, restores cylindrical symmetries be-
cause the disorders effectively renormalize the value of
the diffusion constant by a scaling factor. In Fig. 2 (in
the main text), we have calculated localized solutions of
diffusion equation, with no cylindrical symmetries, con-
sidering only one copy of randomness in scattering center
positions, embedded in Df,d = Df (~r).

The differences in local and global characters of the
solutions, such as the (Anderson) localization of the so-
lutions, stem from the steps in which ensemble averaging
has been performed, before or after calculating the solu-
tions, as these two operations are non-commutative: (1)
calculating numerical solutions of the diffusion equation
assuming Df,d = Df (~r) and (2) performing ensemble av-
erage over the percolating clusters (loops) and tracing
out locations of the scattering centers.

Depending on which of these approaches are relevant
to the physical system under investigation, we may arrive
to drastically different conclusions for the intra- vs. inter-
track couplings at FLASH UHDR.
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