

Supplementary Figure S1 Phenotypic comparisons between tobacco K326 and M28 at different time points after exposing to natural drought (ND) stress.

Supplementary Figure S2 Phenotypic comparisons between tobacco K326 and M28 at different time points after exposing to 200mM mannitol treatment (simulated drought, SD).

Supplementary Figure S3 Hierarchically clustered correlation matrix of RNA-seq data generated from M28 and K326 subjected to drought treatment at different time points. Three replicates for each time point. Pearson correlations were calculated and Hierarchically clustered by heatmap package in R.

Supplementary Figure S4 Comparisons of genes that were up- or down-regulated before (CK) or after drought treatment.

Α

B

Supplementary Figure S5 GO term enrichment analyses of common down-regulated genes for all time points under drought treatment.

Supplementary Figure S6 Characterization of time-point-related up- or down-regulated genes in K326 or M28 under drought treatment. (A) Venn plots showing overlaps of time-point-related up-regulated genes in K326 (right) or M28 (left) under drought treatment. (B) Venn plots showing overlaps of time-point-related down-regulated genes in K326 (right) or M28 (left) under drought treatment. (C) GO term enrichment analyses of up- and down-regulated genes in K326 or M28 under drought treatment.

Supplementary Figure S7 PCA of metabolome generated from M28 and K326 subjected to drought treatment at different time points.

Supplementary Figure S8 Comparisons of differential metabolites between M28 and K326 before and after drought treatment.

Supplementary Figure S9 KEGG analyses of common down-regulated metabolites between M28 and K326 after drought treatment

Supplementary Figure S10 KEGG analyses of common up-regulated metabolites between M28 and K326 after drought treatment

B

Supplementary Figure S11 KEGG analyses for all drought induced DEGs.

Supplementary Figure S12 Overview of the KEGG pathway of Nitrogen_metabolism (left) and Pyruvate_metabolism (right). The red indicates significantly up-regulated metabolites post drought treatment.

Supplementary Figure S13 Involvement of DEGs in combination with metabolites in Nitrogen_metabolism pathway for synthesis of glutamate in tobacco. The red representing DEGs and differential metabolites that were significantly enriched in the pathways of Nitrogen_metabolism .

Supplementary Figure S14 Relative expression levels of *Nitab4.5_0001454g0180* and *Nitab4.5_0000123g0370* in overview of DEGs and metabolites involved in "Phenylpropanoid biosynthesis" and "Flavonoid biosynthesis". Significance test was determined using t-test, *: 0.05 > p > 0.01; **: 0.01 > p > 0.001; ***: p < 0.001.

Module-pheno relationships

Supplementary Figure S15 Module-sample association. Each row represents a module. Each column corresponds to a specific sample. The color of each cell at the row-column intersection indicates the correlation coefficient between the module and sample. The red indicating a high degree of correlation between a specific module and sample.

Supplementary Figure S16 WGCNA analyses. (A) Module Gene expression pattern in the tan module, the red representing up-regulated genes, the green representing down-regulated genes. (B) The correlation network of genes in the tan module. A gene network is constructed by WGCNA, in which each node represents a gene, and the connecting line between genes represents the co-expression correlation, the blue representing not significant genes and the yellow representing down-regulated genes between M28 and K326 before and after drought treatment. The genes with weights >0.1 are visualized by Cytoscape.

	DEGs	
_	Down-regulated	Up-regulated
28_0 vs K326_0	700	782
28_1 vs K326_1	503	502
28_2 vs K326_2	455	464
28_4 vs K326_4	521	557
28_8 vs K326_8	378	490
28_1 vs 28_0	358	529
28_2 vs 28_0	382	515
28_4 vs 28_0	776	966
28_8 vs 28_0	1,553	1,543
28_2 vs 28_1	41	58
28_4 vs 28_1	389	356
28_8 vs 28_1	1,224	1,135
28_4 vs 28_2	157	106
28_8 vs 28_2	1,072	918
28_8 vs 28_4	677	594
K326_1 vs K326_0	620	770
K326_2 vs K326_0	646	722
K326_4 vs K326_0	1,073	1,199
K326_8 vs K326_0	1,920	1,707
K326_2 vs K326_1	298	175
K326_4 vs K326_1	671	644
K326_8 vs K326_1	1,519	1,384
K326_4 vs K326_2	183	194
K326_8 vs K326_2	1,223	996
K326 8 vs K326 4	613	387

Supplementary Table S1. Summary of time-point-related drought-induced DEGs in M28 or K326 or between M28 and K326

_	DiffExp metabo	lites statistics	
	Down-regulated	Up-regulated	
28_0 vs K326_0	34	36	
28_1 vs K326_1	16	26	
28_2 vs K326_2	51	21	
28_4 vs K326_4	9	36	
28_8 vs K326_8	20	19	
28_1 vs 28_0	0	21	
28_2 vs 28_0	15	11	
28_4 vs 28_0	7	22	
28_8 vs 28_0	2	21	
28_2 vs 28_1	18	2	
28_4 vs 28_1	16	6	
28_8 vs 28_1	11	10	
28_4 vs 28_2	1	8	
28_8 vs 28_2	1	23	
28_8 vs 28_4	10	7	
K326_1 vs K326_0	4	9	
K326_2 vs K326_0	2	69	
K326_4 vs K326_0	10	11	
K326_8 vs K326_0	5	38	
K326_2 vs K326_1	1	17	
K326_4 vs K326_1	3	0	
K326_8 vs K326_1	4	23	
K326_4 vs K326_2	43	0	
K326_8 vs K326_2	20	13	
K326 8 vs K326 4	1	10	

Supplementary Table S2. Summary of time-point-related drought-induced DiffExp metabolites in M28 or K326 or between M28 and K326

Supplementary	Table S8. Ur	p-regulated and	Down-regulated	genes in brown	and Tan modules

up-regulated genes in brown module	down-regulated genes in Tan module
Nitab4.5_0000040g0380	Nitab4.5_0000036g0450
Nitab4.5_0000050g0020	Nitab4.5_0000040g0400
Nitab4.5_0000062g0300	Nitab4.5_0000041g0020
Nitab4.5_0000092g0390	Nitab4.5_0000080g0010
Nitab4.5_0000110g0090	Nitab4.5_0000081g0040
Nitab4.5_0000117g0150	Nitab4.5_0000091g0300
Nitab4.5_0000173g0140	Nitab4.5_0000716g0160
Nitab4.5_0000178g0210	Nitab4.5_0000718g0110
Nitab4.5_0000195g0170	Nitab4.5_0000727g0010
Nitab4.5_0000303g0130	Nitab4.5_0000864g0040
Nitab4.5_0000458g0100	Nitab4.5_0001079g0100
Nitab4.5_0000500g0090	Nitab4.5_0001552g0120
Nitab4.5_0000525g0020	Nitab4.5_0001780g0020
Nitab4.5_0000856g0240	Nitab4.5_0002052g0010
Nitab4.5_0000978g0010	Nitab4.5_0002239g0050
Nitab4.5_0000993g0090	Nitab4.5_0002337g0010
Nitab4.5_0001315g0150	Nitab4.5_0002700g0030
Nitab4.5_0001315g0190	Nitab4.5_0002769g0080
Nitab4.5_0001925g0020	Nitab4.5_0002796g0030
Nitab4.5_0001996g0010	Nitab4.5_0003012g0130
Nitab4.5_0002367g0080	Nitab4.5_0003030g0080
Nitab4.5_0002682g0080	Nitab4.5_0003290g0030
Nitab4.5_0003286g0020	Nitab4.5_0004550g0110
Nitab4.5_0004274g0040	Nitab4.5_0005090g0030
Nitab4.5_0005820g0010	
Nitab4 5_0005901g0010	

up-regulated genes	TFs
Nitab4.5_0000175g0070	bHLH
Nitab4.5_0000540g0010	СЗН
Nitab4.5_0000082g0020	CCAAT
Nitab4.5_0000986g0060	up-regulated genes
Nitab4.5_0001788g0010	up-regulated genes
Nitab4.5_0004624g0020	up-regulated genes
Nitab4.5_0000312g0130	up-regulated genes
Nitab4.5_0005745g0030	up-regulated genes
Nitab4.5_0002887g0100	up-regulated genes
Nitab4.5_0002079g0020	up-regulated genes
Nitab4.5_0000142g0080	up-regulated genes
Nitab4.5_0000832g0190	up-regulated genes
Nitab4.5_0002093g0090	up-regulated genes
Nitab4.5_0000471g0030	up-regulated genes
Nitab4.5_0000130g0300	up-regulated genes
Nitab4.5_0001239g0040	up-regulated genes
Nitab4.5_0002716g0020	up-regulated genes
Nitab4.5_0000463g0070	up-regulated genes

Supplementary Table S9. Blue module contained 15 up-regulated genes and 3 TFs

Gene name	Primer	Sequence
NCED1	F	GGCCATTGCAGAACCATGGCCAAA
	R	GCTTTGCTGTTAGGGTCTCTTGG
PP2C-37L	F	ACCCGTCGTTTTGCAAAGGAG
	R	ACCTCTTTCCACTGAGTTTCCCC
P450 84A1L	F	GGGACAGCTGTTAACTTAGG
	R	TAGACTCTGCTTACCAACCCAC
18srDNA	F	AGGATTGACAGACTGAGAGC
	R	CACAGACCTGTTATTGCCTC
Nitab4.5_0001454g0180.1	F	GCGAGTGTTCTTCACATCCTAAA
	R	GCAGAAGGAGTCTCGTAGAGAAGT
Nitab4.5_0000123g0370.1	F	TCCAATGTGTAGCCAAGGAAGG
	R	ACGGCTGGATCACGAGCAACA

Supplementary Table S10. Primers used for gene expression analyses