

Supplementary Material

1 Supplementary Tables and Figures

1.1 Supplementary Tables

Supplementary Table 1: Composition of minimal medium (MM)

		Final	Final	
Minimal Medium	Component	Concentration	Concentration	
		(mg/L)	(mmol/L)	
	Aspartate	100	1.0	
	Glutamate	100	0.8	
	Glycine	100	1.3	
	Valine	100	0.9	
Amino acids	Proline	100	0.9	
	Cysteine	100	0.8	
	Phenylalanine	50	0.3	
	Leucine	50	0.4	
	Lysine	50	0.3	
	Na ₂ HPO ₄	5000	35.2	
aalta	KH ₂ PO ₄	1000	7.3	
Sans	MgSO ₄	100	0.8	
	NaCl	2000	34.2	
Glucose	Glucose N-acetylglucosamine		0.5	
Iron	FeSO ₄ •7H ₂ O	100	0.4	
Vitamina	Nicotinic acid	1000	8.1	
vitariiiris	Riboflavin	100	0.3	

Supplementary Table 2: BHIS and MM sugar concentration

	mmol/L				
Solution	Test 1	Test 2	Test 3	Average	Standard Deviation
5 mM Glucose	1.166	1.166	1.221	1.2	0.03
15 mM Glucose	8.769	11.045	10.434	10.1	1.18
BHIS	15.429	14.097	14.430	14.7	0.69
MM	LO*	1.166	LO*	1.2	

*Measurement range is 1.11 - 33.3 mmol/L

Amino acid	BHIS	ММ
Hydroxyproline	6	
Histidine	326	
Asparagine	672	
Taurine	65	
Serine		
Glutamine	85	
Arginine	2164	31
Glycine	1698	2122
Aspartic Acid	21	829
Glutamic Acid	22	540
Threonine	1017	
Alanine	67	
GABA	35	
Proline	529	869
Hydroxylysine	82	
AABA	51	
Ornithine	73	
Cysteine		409
Lysine		359
Tyrosine	772	
Methionine	1281	
Valine		846
Isoleucine	1190	
Leucine		433
Phenylalanine		332
Tryptophan	1341	
TOTAL (pmol/uL)	11497	6773

Supplementary Table 3: BHIS and MM amino acid quantitation

protein	probe	media	captured peptide	modification	parent ion intensity	charge	m/z _{theor.}	average m/z _{meas.}	error (ppm)	SD	n
PrdA [–]	1			TEV _{heavy}	3.7E+07	2	542.8164	542.8160	-0.7	0.0004	279†
		вні	C*IGPASK	TEVlight	4.5E+07	2	539.8095	539.8091	-0.6	0.0003	298 [†]
			C*IGPASK	TEV _{heavy}	5.5E+07	2	542.8164	542.8157	-1.2	0.0005	297‡
		IVIIVI		TEV _{light}	6.7E+07	2	539.8095	539.8089	-1.1	0.0005	312 [‡]
	2	рці	C*IGPASK	TEV _{heavy}	7.2E+07	2	609.3427	609.3411	-2.7	0.0003	216 [†]
				TEV _{light}	5.0E+07	2	606.3358	606.3351	-1.2	0.0006	107 [†]
		N 4 N 4	C*IGPASK	TEV _{heavy}	1.8E+08	2	609.3427	609.3409	-3.1	0.0003	223§
		IVIIVI		TEV _{light}	1.7E+08	2	606.3358	606.3349	-1.6	0.0004	143 [§]
GrdE 2	1	BHI	C*VSACIDKNPSYVHINNGVVEDLYAR	TEV _{heavy}	3.8E+06	4	808.9042	808.9036	-0.8	0.0008	72 [†]
				TEV _{light}	3.8E+06	4	807.4007	807.4002	-0.9	0.0010	69 [†]
			C*VSACIDKNPSYVHINNGVVEDLYAR	TEV _{heavy}	4.4E+07	4	808.9042	808.9032	-1.2	0.0008	99 [†]
		IVIIVI		TEV _{light}	4.0E+07	4	807.4007	807.3996	-1.4	0.0006	104 [†]
		BHI	C*VSACIDKNPSYVHINNGVVEDLYAR	TEV _{heavy}	4.3E+06	4	842.1674	842.1664	-1.2	0.0011	19 [§]
				TEVlight	3.2E+06	4	840.6639	840.6640	-0.8	0.0013	18 [§]
	2	N/N/		TEV _{heavy}	8.0E+06	2	662.8266	662.8260	-0.9	0.0008	45 [§]
		IVIIVI		TEV _{light}	9.0E_06	2	659.8197	659.8187	-1.5	0.0006	46 [§]

Supplementary Table 4: Statistics of monoisotopic masses in MS1 spectra for chemically modified peptides

* site of modification by probe clicked with TEV tags.

Is the of modification by probe clicked with PLV tags. Is the sum of spectral counts ($n \ge 69$) for given peptide from three technical replicates (2 biological). It he sum of spectral counts ($n \ge 297$) for given peptide from four technical replicates (3 biological). Is the sum of spectral counts ($n \ge 18$) for given peptide from two biological replicates

Chemically Defined Medium	Component	Final Concentration (mg/L)	Final Concentration (mmol/L)	
	casamino acids	10000	18.5	
Amino acids	∟-tryptophan	500	2.4	
	L-cysteine	500	4.1	
	Na ₂ HPO ₄	5000	35.2	
Salta	NaHCO ₃	5000	59.5	
Sans	KH ₂ PO ₄	900	6.6	
	NaCl	900	15.4	
Glucose	D-glucose	10000	55.5	
	(NH ₄) ₂ SO ₄	40	0.3	
	CaCl ₂ •2H ₂ O	26	0.2	
Trace salts	MgCl ₂ •6H ₂ O	20	0.1	
	MnCl ₂ •4H ₂ O	10	0.05	
	CoCl ₂ •6H ₂ O	1	0.008	
Iron FeSO ₄ •7H ₂ O		4	0.01	
	D-biotin	1	0.004	
Vitamins	calcium-D-pantothenate	1	0.004	
	pyridoxine	1	0.006	

Supplementary Table 5: Composition of chemically defined medium (CDM)

1.2 Supplementary Figures

Supplementary Figure 1. Metabolic processes utilized by *C. difficile* and their association to toxin regulation. Simplified schematics of the metabolic pathways, both *Clostridia*-specific (outlined in full black) and not *Clostridia*-specific (outlined in dashed black), utilized by *C. difficile*. Electron bifurcation (outlined in gray) is coupled to multiple fermentation pathways. Dashed arrows represent multiple reactions. Global regulators (CcpA, CodY, SigH, Fur, PrdR, Rex) regulate the various pathways as marked by colored dots to the right of each pathway.

Supplementary Figure 2. Electrophilic and oxidative enzyme cofactors. Enzyme cofactors essential for bacteria.

Supplementary Figure 3. Hydrazine probes and competitors. Structures of **(A)**, hydrazine probes and **(B)**, hydrazine competitors. Related to Fig. 1B.

Supplementary Figure 4. Gel-based profiles of probe-treated *C. difficile* cells. (A), Probe 1 and (B), probe 2 labelling profiles in *C. difficile* cells cultivated in BHIS, grown to stationary phase and pretreated with varying concentrations of non-clickable analogs 3 and 4, respectively (*upper*). Corresponding expression profiles are shown after Coomassie staining (*below*). Concentrations and molecular weight markers are indicated.

Supplementary Figure 5. C. difficile growth and viability in BHIS with hydrazine. Growth curves of C. difficile with 3-fold serial dilutions of (A), 3 and (B), 4 from 3.0-0.01 mM as assessed by optical density at 600 nm (OD₆₀₀). Hydrazine does not affect C. difficile growth at probe treatment conditions (3 mM for 1, 1 mM for 2). Averages of three independent experiments along with standard error are shown. (C), Colony forming unit (CFU) of C. difficile with no treatment (NaCl, 3 mM), 3 (3 mM), 4 (1 mM) and Ethanol (20%). Hydrazine does not significantly affect C. difficile viability at probe treatment conditions (mean \pm SEM, n=3, t-test with Welch's correction using Prism9, P < 0.05 is significant).

Supplementary Figure 6. Probe 1 and probe 2 reactive targets in *C. difficile* cells. Quadrant plot of average competition versus enrichment ReDiMe ratios for (A), probe 1 and (B), probe 2 from quantitative proteomic analysis of *C. difficile* VPI 10463 cells grown to stationary phase (n = 4 biological replicates). High-reactivity targets (enrichment ratio ≥ 8 and competition ratio ≥ 2) labelled by 1 or 2 are shown in the upper right quadrant in red and listed by protein symbol to the right of each plot. Enzymes further investigated in this work are in **bold**. (C), Extracted MS1 chromatograms and corresponding heavy/light ratios (enrichment and competition) for representative tryptic peptides of endogenous forms of high-reactivity targets of probe 1 and probe 2. Related to Fig 1.

Supplementary Figure 7. Growth curve of *C. difficile* in MM. Growth curve of *C. difficile* cultivated in MM as assessed by optical density at 600 nm (OD_{600}). Averages of three independent experiments along with standard error are shown.

Supplementary Figure 8. Comparison of PrdA and GrdE expression in BHIS and MM. (A), Gelbased labelling profiles of probe 1 in the soluble proteome of *C. difficile* cells cultivated in BHIS and MM harvested in mid-log phase (L) and stationary phase (S) (*upper*). Corresponding expression profiles are shown after Coomassie staining (*below*). (B), Schematic for in-gel digestion followed by late-stage reductive dimethylation (ReDiMe). (C), Comparison of PrdA (*left*) and GrdE (*right*) expression in BHIS and MM in stationary phase after in-gel digestion and ReDiMe of the 20-25 kDa molecular weight range. H:L ratios quantify PrdA and GrdE expression in the various medias. Averages from two independent experiments along with standard deviations are shown. Related to Fig. 2.

Supplementary Figure 9. Workflow schematic for site of labelling experiments. Characterization of probe-labelled peptides using the isoTOP-ABPP method. Probe-labelled peptides are conjugated to isotopically differentiated protease cleavable biotin-azide tags through 'click' chemistry, combined 1:1, enriched through streptavidin adsorption and digested with trypsin. The probe-labelled peptides are released from the beads through a second digestion with TEV protease and analyzed as mass differentiated pairs by LC-MS/MS.

Supplementary Material

Supplementary Figure 10. MS characterization of probe 1-labelled peptide of PrdA in *C. difficile* cultivated in BHIS. (A), Structures and theoretical parent masses of heavy- and light-tagged peptides processed by the isoTOP-ABPP method. (B), Extracted parent ion chromatograms (*left*) and corresponding isotopic envelopes (*right*) for heavy- (blue) and light- (red) tagged peptides detected from *C. difficile* cells treated with probe 1 at stationary phase. (C), MS2 spectra generated from parent ions. Unshifted ions are shown in green and the shifted ion series in blue (heavy) and red (light). (D), Summary table of theoretical versus observed spectra assignments generated under high-resolution MS2 conditions.

Supplementary Figure 11. MS characterization of probe 2-labelled peptide of PrdA in *C. difficile* cultivated in BHIS. (A), Structures and theoretical parent masses of heavy- and light-tagged peptides processed by the isoTOP-ABPP method. (B), MS2 spectra generated from parent ions. Unshifted ions are shown in green and the shifted ion series in blue (heavy) and red (light). (C), Summary table of theoretical versus observed spectra assignments generated under high-resolution MS2 conditions. Related to Fig. 3.

Supplementary Figure 12. MS characterization of probe 1-labelled peptide of GrdE in *C. difficile* cultivated in BHIS. (A), Structures and theoretical parent masses of heavy- and light-tagged peptides processed by the isoTOP-ABPP method. C* is site of static modification by carbamidomethyl. (B), Extracted parent ion chromatograms (*left*) and corresponding isotopic envelopes (*right*) for heavy-(blue) and light- (red) tagged peptides detected from *C. difficile* cells treated with probe 1 at stationary phase. (C), MS2 spectra generated from parent ions. Unshifted ions are shown in green and the shifted ion series in blue (heavy) and red (light). (D), Summary table of theoretical versus observed spectra assignments generated under high-resolution MS2 conditions.

Supplementary Figure 13. MS characterization of probe 2-labelled peptide of GrdE in *C. difficile* cultivated in BHIS. (A), Structures and theoretical parent masses of heavy- and light-tagged peptides processed by the isoTOP-ABPP method. C* is site of static modification by carbamidomethyl. (B), MS2 spectra generated from parent ions. Unshifted ions are shown in green and the shifted ion series in blue (heavy) and red (light). (C), Summary table of theoretical versus observed spectra assignments generated under high-resolution MS2 conditions. Related to Fig. 3.

Supplementary Material

Supplementary Figure 14. MS characterization of probe 1-labelled peptide of PrdA in *C. difficile* cultivated in MM. (A), Structures and theoretical parent masses of heavy- and light-tagged peptides processed by the isoTOP-ABPP method. (B), Extracted parent ion chromatograms (*left*) and corresponding isotopic envelopes (*right*) for heavy- (blue) and light- (red) tagged peptides detected from *C. difficile* cells treated with probe 1 at stationary phase. (C), MS2 spectra generated from parent ions. Unshifted ions are shown in green and the shifted ion series in blue (heavy) and red (light). (D), Summary table of theoretical versus observed spectra assignments generated under high-resolution MS2 conditions.

Supplementary Material

Supplementary Figure 15. MS characterization of probe2-labelled peptide of PrdA in *C. difficile* cultivated in MM. (A), Structures and theoretical parent masses of heavy- and light-tagged peptides processed by the isoTOP-ABPP method. (B), Extracted parent ion chromatograms (*left*) and corresponding isotopic envelopes (*right*) for heavy- (blue) and light- (red) tagged peptides detected from *C. difficile* cells treated with probe 2 at stationary phase. (C), MS2 spectra generated from parent ions. Unshifted ions are shown in green and the shifted ion series in blue (heavy) and red (light). (D), Summary table of theoretical versus observed spectra assignments generated under high-resolution MS2 conditions.

Supplementary Figure 16. MS characterization of probe 1-labelled peptide of GrdE in *C. difficile* cultivated in MM. (A), Structures and theoretical parent masses of heavy- and light-tagged peptides processed by the isoTOP-ABPP method. C* is site of static modification by carbamidomethyl. (B), Extracted parent ion chromatograms (*left*) and corresponding isotopic envelopes (*right*) for heavy-(blue) and light- (red) tagged peptides detected from *C. difficile* cells treated with probe 1 at stationary phase. (C), MS2 spectra generated from parent ions. Unshifted ions are shown in green and the shifted ion series in blue (heavy) and red (light). (D), Summary table of theoretical versus observed spectra assignments generated under high-resolution MS2 conditions.

Supplementary Material

Supplementary Figure 17. MS characterization of probe 2-labelled peptide of GrdE in *C. difficile* cultivated in MM. (A), Structures and theoretical parent masses of heavy- and light-tagged peptides processed by the isoTOP-ABPP method. C* is site of static modification by carbamidomethyl. (B), Extracted parent ion chromatograms (*left*) and corresponding isotopic envelopes (*right*) for heavy-(blue) and light- (red) tagged peptides detected from *C. difficile* cells treated with probe 2 at stationary phase. (C), MS2 spectra generated from parent ions. Unshifted ions are shown in green and the shifted ion series in blue (heavy) and red (light). (D), Summary table of theoretical versus observed spectra assignments generated under high-resolution MS2 conditions.

Supplementary Figure 18. Purification of PR and *in vitro* reactivity with probe 2. (A), Expression of purified PR from *C. difficile*. Subunits of the purified enzyme complex are labelled. (B), Parallel samples of active D-proline reductase purified from *C. difficile* were incubated in the presence or absence of probe 2 (1 mM) and analyzed by LC-MS. (C), Sequence coverage for unmodified and modified peptides of PrdA in D-proline reductase treated with probe 2. (D), Extracted parent ion

chromatograms for tryptic peptides highlighted in (C). Inset chromatograms represent a different form of the tryptic peptide (shown in parentheses) observed from trypsin miscleavages. These are included to account for total unmodified peptide abundances. C^* is site of static modification by carbamidomethyl. Related to Fig. 3.

Supplementary Figure 19. 2-labelling and expression profiles of *C. difficile* in supplemented MM. Full gel-based monitoring of the fraction of Pvyl-PR and Pvyl-GR labelled by **2** in MM (Base) supplemented with high (10 mM) and low (0.1 mM) concentrations of selected metabolites (*upper*). **2**-labelled purified PR and **2**-treated lysate of glycine-grown cells are included as controls. Corresponding expression profiles are shown after Coomassie staining (*lower*). Related to Fig. 4.

Supplementary Figure 20. Monitoring PR activity at stationary phase in physiologically relevant conditions. (A), Gel-based proteomic profiles of *C. difficile* strains (in Fig. 5A) treated with 2 in stationary phase and the corresponding expression profiles after Coomassie staining (*lower*). (B), Relative band intensities of Pvyl-PR in (A) normalized against expression. Pvyl-PR in strain 630 set to a relative intensity of 1. (mean \pm SEM, n=2, multiple pairwise *t*-tests using Prism9, P < 0.05 is significant). Related to Fig. 5.

Supplementary Figure 21. Inhibition of D-proline reductase with organohydrazines. (A), Schematic of fluorometric assay for measuring D-proline reductase activity. (B), Purified PR activity in the absence and presence of D-proline. The relative fluorescence is proportional to the amount of 5-aminovalerate produced. Averages from three independent experiments along with standard error are shown. (C), Inhibition curves of 3, 4, 6-10 for D-proline reductase. For all experiments, the relative fluorescence is proportional to the amount of 5-aminovalerate produced. Averages from three independent experiments along with standard error are shown and fitted to a nonlinear regression function (log[inhibitor] vs. response) in Prism 9. IC_{50} values and standard deviations were calculated from nonlinear regression functions from three independent experiments. Related to Fig. 5.