Computational design of quinone electrolytes for redox flow batteries using machine learning and high-throughput theoretical calculations
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This document provides computational details of the machine learning model building process, including the construction of a virtual quinone-like molecular library, quantitative computational results of molecular properties, hyperparameter selection for the Xgboost model, and model prediction results of molecular properties.
Calculation of solvation free energy 
Solvation-free energy is the most fundamental property of molecules which can represent the actual solubility of the molecule to some extent. It refers to the energy change of the entire system during the process of dissolving solute molecules from vacuum to solvent at a fixed temperature and pressure. The method for calculating the solvation free energy by a combination of quantum mechanical (QM) calculations and classical density functional theory (cDFT) has been established in our previous work1–3. Specifically, the SPC/E4 water model is used for calculation, and the solute structure is determined using the Hartree−Fock (HF) method by energy minimization in a vacuum. The AM1-BCC5 atomic charges are assigned to calculate electrostatic interactions and the GAFF6 force-field parameters are chosen to describe the van der Waals (VDW) interactions.
Calculation of HOMO-LUMO gap
HOMO-LUMO gap refers to the energy difference between HOMO and LUMO in molecular orbital theory, which can be used to measure whether a molecule is easily excited. Thus HOMO-LUMO gap is used to characterize the open-circuit voltage when the substance molecule is used as the active material of the flow battery. All QM calculations are based on the ORCA ab initio quantum chemistry package7.
Machine learning based on Xgboost 
To express the molecular structure as digital parameters that can be used by the machine learning model and unify the input features, we used RDKit (version 2017.09.1) python package to calculate 200 two-dimensional molecular descriptors for each molecule, which were used as input features of machine learning model. Xgboost8 (version 1.4.1) is a machine learning algorithm that has been optimized in algorithm and engineering based on the Gradient Boosting Decision Tree (GBDT). By continuously generating new decision trees to fit the residuals of the last prediction, Xgboost’s practicality has been verified in many tasks9–11.
Machine learning based on Attentive FP
Attentive Fingerprints (FP)12 is a representation method of a molecular graph network based on an attention mechanism. Unlike machine learning methods such as Xgboost, it represents the entire molecule as a graph. The atoms in the molecule are the nodes of the graph, and the bonds between the atoms are the undirected edges between the nodes. Through the calculation of the surrounding environment of each node atom in the molecular graph (the number and type of neighboring atoms, etc.), the characteristics of each node are obtained, and finally, the characteristics of a molecule as a whole are integrated, which is used to train the deep learning model based on the PyTorch to predict the molecule’s various properties. Both the calculation of molecular descriptors and molecular graph networks are carried out based on the SMILES expression of molecules.
Hyperparameter optimization
In this work, we use the Tree Parzen Estimator algorithm in Hyperopt13 to optimize the learning rate, dropout rate, the number of trees, and other parameters in the model. The detailed hyperparameters for optimization are listed in Supplementary Table S1.
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Figure 1. Construction of virtual molecular libraries based on quinone backbone and specified substituents



Table S1. Hyperparameters for optimization in xgboost model
	hyperparameters
	option

	max_depth
	[3,4,5,6,7,8,9]

	min_child_weight
	[1,2,3,4,5]

	gamma
	[0,0.02,0.04,0.06,0.08,0.10,0.12,0.14,0.16,0.18]

	reg_lambda
	[1e-5, 1e-2, 0.1, 1]

	reg_alpha
	[1e-5, 1e-2, 0.1, 1]

	lr
	[0.01, 0.05, 0.001, 0.005]

	n_estimators
	[80,90,100,110,120,130,140,150,160,170,180,190]

	colsample_bytree
	[0.75,0.80,0.85]

	subsample
	[0.75,0.80,0.85]



Table S2. Quantitative computation of molecular properties and corresponding machine learning predictions.
	MOL
	SMILES
	QM_HOMO-LUMO
	QM_
SFE
	xgb_pred_hl
	xgb_pred_sfe

	110AQ_0_0
	O=C(C1=C2)C=CC=C1C(C3=C2C=CC=C3)=O
	6.032
	-9.872
	6.104
	-9.823

	110AQ_1_1
	O=C(C1=C2)C(N(C)C)=CC=C1C(C3=C2C=CC=C3)=O
	5.919
	-11.582
	6.056
	-11.542

	110AQ_1_10
	O=C(C1=C2)C(C=C)=CC=C1C(C3=C2C=CC=C3)=O
	6.093
	-9.495
	6.079
	-9.970

	110AQ_1_11
	O=C(C1=C2)C(C=O)=CC=C1C(C3=C2C=CC=C3)=O
	6.333
	-12.424
	6.189
	-12.743

	110AQ_1_12
	O=C(C1=C2)C(C(=O)OC)=CC=C1C(C3=C2C=CC=C3)=O
	6.351
	-15.322
	6.264
	-15.182

	110AQ_1_13
	O=C(C1=C2)C(C(F)(F)F)=CC=C1C(C3=C2C=CC=C3)=O
	6.37
	-10.073
	6.197
	-9.887

	110AQ_1_14
	O=C(C1=C2)C(C#N)=CC=C1C(C3=C2C=CC=C3)=O
	6.393
	-14.039
	6.295
	-13.787

	110AQ_1_15
	O=C(C1=C2)C(C(O)O)=CC=C1C(C3=C2C=CC=C3)=O
	6.474
	-13.262
	6.215
	-13.600

	110AQ_1_16
	O=C(C1=C2)C(OP(O)O)=CC=C1C(C3=C2C=CC=C3)=O
	6.491
	-15.323
	6.290
	-15.115

	110AQ_1_17
	O=C(C1=C2)C(OS(=O)O)=CC=C1C(C3=C2C=CC=C3)=O
	6.493
	-14.496
	6.152
	-14.812

	110AQ_1_18
	O=C(C1=C2)C(ON=O)=CC=C1C(C3=C2C=CC=C3)=O
	6.344
	-11.566
	6.319
	-11.790

	110AQ_1_2
	O=C(C1=C2)C(N)=CC=C1C(C3=C2C=CC=C3)=O
	6.213
	-12.550
	6.190
	-12.647

	110AQ_1_3
	O=C(C1=C2)C(OC)=CC=C1C(C3=C2C=CC=C3)=O
	6.589
	-9.660
	6.345
	-11.095

	110AQ_1_4
	O=C(C1=C2)C(O)=CC=C1C(C3=C2C=CC=C3)=O
	6.77
	-13.998
	6.366
	-13.003


The complete data sheet is available in SupplementaryInformation2.csv.

Table S3. Property prediction and scoring results for over 100,000 di-substitutes.
	BACKBONE
	SMILE
	SFE
	HOMOLUMO
	SCORE

	110AQ
	O=C(C1=C2)C(N(C)C)=C(N(C)C)C=C1C(C3=C2C=CC=C3)=O
	-12.3143 
	6.0952 
	0.5100 

	110AQ
	O=C(C1=C2)C=CC=C1C(C3=C2C=CC(C(F)(F)F)=C3C(O)O)=O
	-15.6248 
	5.9994 
	0.5604 

	110AQ
	O=C(C1=C2)C=CC=C1C(C3=C2C=CC(C(F)(F)F)=C3C#N)=O
	-14.1183 
	6.1167 
	0.5411 

	110AQ
	O=C(C1=C2)C=CC=C1C(C3=C2C=CC(C(F)(F)F)=C3C(F)(F)F)=O
	-10.2264 
	6.0350 
	0.4722 

	110AQ
	O=C(C1=C2)C=CC=C1C(C3=C2C=CC(C(F)(F)F)=C3C(=O)OC)=O
	-15.1062 
	5.9546 
	0.5495 

	110AQ
	O=C(C1=C2)C=CC=C1C(C3=C2C=CC(C(F)(F)F)=C3C=O)=O
	-13.0904 
	6.1536 
	0.5259 

	110AQ
	O=C(C1=C2)C=CC=C1C(C3=C2C=CC(C(F)(F)F)=C3C=C)=O
	-9.9387 
	6.5173 
	0.4915 

	110AQ
	O=C(C1=C2)C=CC=C1C(C3=C2C=CC(C(F)(F)F)=C3Cl)=O
	-10.4859 
	6.1174 
	0.4806 

	110AQ
	O=C(C1=C2)C=CC=C1C(C3=C2C=CC(C(F)(F)F)=C3F)=O
	-10.0245 
	5.9093 
	0.4625 

	110AQ
	O=C(C1=C2)C=CC=C1C(C3=C2C=CC(C(F)(F)F)=C3C)=O
	-10.4369 
	6.1113 
	0.4795 

	110AQ
	O=C(C1=C2)C=CC=C1C(C3=C2C=CC(C(F)(F)F)=C3S)=O
	-10.9431 
	5.9661 
	0.4807 

	110AQ
	O=C(C1=C2)C=CC=C1C(C3=C2C=CC(C(F)(F)F)=C3O)=O
	-13.4111 
	5.9863 
	0.5228 

	110AQ
	O=C(C1=C2)C=CC=C1C(C3=C2C=CC(C(F)(F)F)=C3OC)=O
	-11.2956 
	6.2864 
	0.5026 

	110AQ
	O=C(C1=C2)C=CC=C1C(C3=C2C=CC(C(F)(F)F)=C3N)=O
	-13.6752 
	6.0951 
	0.5327 


The complete data sheet is available in SupplementaryInformation3.csv.






Tabel S4. Achieved quinone-based redox flow battery performance.
	Negative electrolyte
	Positive electrolyte
	Temperature
	Membrane
	Open Circuit voltage/V
	Energy density/(Wh/L)
	PH
	Capacity fade rate
	Solubility

	AQDS
	HBr
	40
	Nafion 212
	0.86
	16
	0
	0.1%–0.2%/day
	

	26DBEAQ
	K4Fe(CN)6
	20
	
	1.05
	17
	12
	<0.01%/day
	0.6 M at pH 12

	26DHAQ
	K4Fe(CN)6
	20
	Nafion 212
	1.2
	6.8
	14
	0.1%/cycle
	>0.6 M in 1 M KOH

	PEGAQ
	K4Fe(CN)6
	45
	
	1
	25.2
	7
	0.5%/day
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