Supplementary Information Island ecosystem responses to the Kuwae eruption and precipitation change over the last 1600 years, Efate, Vanuatu

Nichola A. Strandberg, David A, Sear, Peter G. Langdon, Shane J. Cronin, Catherine T. Langdon, Ashley E. Maloney, Samantha Bateman, Thomas Bishop, Ian W. Croudace, Melanie J. Leng, Julian P. Sachs, Matthew Prebble, William D. Gosling, Mary Edwards, Sandra Nogué.

Data and R scripts can be found online at https://github.com/nastrandberg/Vanuatu.git

This file contains:

Methods, figures S1, S, S3, S4, and S5 and tables S1, S2, S3, and S4.

C/N method

To obtain total organic carbon values 5% hydrochloric acid was added to samples in beakers to remove calcium carbonates. The solution was left overnight and then topped up with de-ionised water and left until the sample settled. Once the water was clear, the sample was decanted. This process was repeated three times. The remaining solution was dried overnight at 40°C. The dried samples were then homogenised in an agate pestle and mortar.

To obtain N values, the sediments were freeze dried. Both C and N samples are weighed into tin capsules and were analysed using the Isoprime precisION with an Elementar elemental analyser. BROC3 and Spirulina standards were used for C and N measurements.

Pollen and spore analysis

We added one tablet containing ~9666 or ~14285 *Lycopodium* exotic spores (batch numbers 3862 and 100320201 respectively, from Lund University) to each sample for calculating concentrations (Stockmarr, 1971). A solution of 10% HCl was used to dissolve the *Lycopodium* tablets and any carbonates. To disaggregate organic material, the samples were boiled in 10% KOH for 10 minutes. The samples were passed through two nested sieves, 125 μ m and 10 μ m. The fraction >10 μ m was retained for further pollen analysis. The samples were boiled with 40% HF for 30 minutes to remove silicates. Acetolysis was achieved through the removal of water using glacial acetic acid (CH₃COOH), and then addition of a solution of 9:1 acetic acid to H₂SO₄. The samples were boiled in the acetolysis solution for 3 minutes and the reaction was stopped with glacial acetic acid. The slides were mounted with glycerine jelly (Moore et al., 1991).

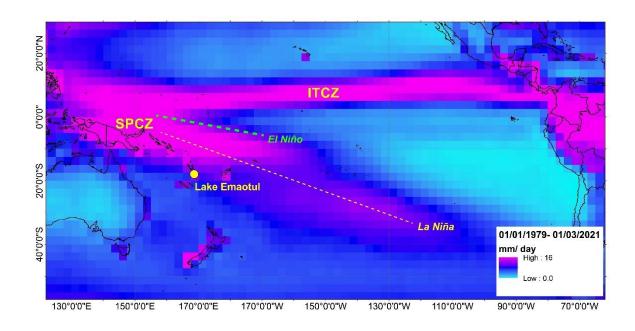


Figure S1. GPCP satellite-gauge 1979 to 2021 mean precipitation mm/day (provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their website at https://psl.noaa.gov/) (Adler et al., 2003). The yellow dashed line indicates the extend and direction of the SPCZ in La Niña conditions and the coarse green dashed line shows the extent during El Niño conditions.

Table S1. Radiocarbon and Pb^{210} dates, cc refers to the calibration curve used in Rbacon (Blaauw and Christen, 2011).

Laboratory ID	Age (Calibrated years before 1950)	error	Depth (cm)	
surface	-65	1	0	
3474-1	-65	1	0.25	
3508-1	-64.67	1	0.75	
3537-1	-64.49	1	1.25	
3537-2	-64.18	1	1.75	
3508-2	-63.93	1	2.25	
3537-3	-63.57	1	2.75 3.25	
3537-4	-63.07	1		
3537-5	-62.2	1	3.75	

3474-2	-61.25	1	4.25
3537-6	-60.52	1	4.75
3537-7	-59.71	1.1	5.25
3537-8	-58.56	1.3	5.75
3508-3	-57	1.6	6.25
3537-9	-56.26	1.7	6.75
3537-10	-55.56	1.9	7.25
3537-11	-54.4	2.1	7.75
3474-3	-53.5	2.3	8.25
3537-12	-52.75	2.4	8.75
3537-13	-51.83	2.6	9.25
3537-14	-50.47	2.9	9.75
3508-4	-48.32	3.3	10.5
3537-15	-46.68	3.7	11.5
3474-4	-45.06	4	12.5
3537-16	-43.19	4.4	13.5
3508-5	-40.8	4.8	14.5
3537-17	-37.39	5.5	15.5
3474-5	-33.86	6.2	16.5
3537-18	-29.32	7.1	17.5
3508-6	-25.2	8	18.5
3537-19	-19.22	9.2	19.5
3474-6-L	-10.33	10.9	20.5
3537-20	0.44	13.1	21.5
3508-7	11.81	15.4	22.5
3537-21	34.71	19.9	23.5
D-AMS 026249 (L1 28- 29)	124	24	48.8

D-AMS 026250 (L1 58- 59)	-58	25	78.8
SUERC-67469 (L1 90-91)	349	37	110.8
UBA-46366 (L1A 72-73)	711	22	172.79
D-AMS 026251 (L2 58- 59)	923	26	197.82
SUERC-67470 (L3 15-16)	1262	35	258.71
D-AMS 026252 (L3 76- 77)	1608	25	319.71
SUERC-67471 (L3A 58-59)	1853	37	338.34

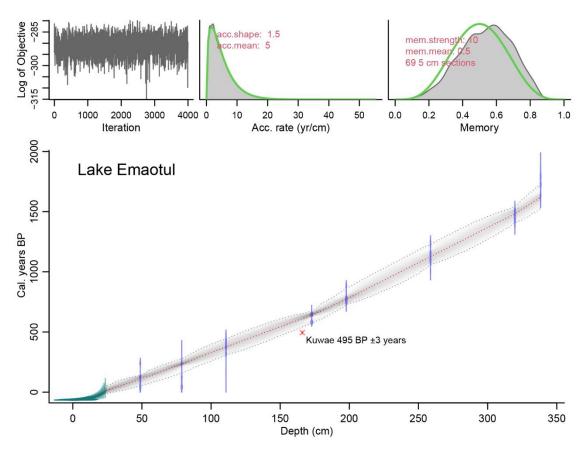


Figure S2. Bacon age-depth model for Lake Emaotul, Efate, Vanuatu calibrated using the Southern Hemisphere calibration curve (Hogg et al., 2013). (RStudio Team, 2015, Blaauw and Christen, 2011, R Core Team, 2017) after Sear et al (2020) and (Maloney et al., 2022).

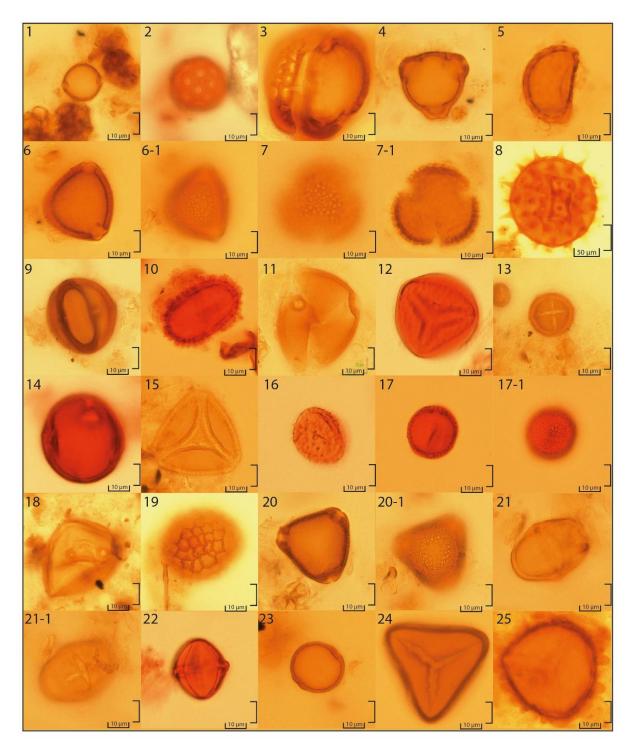


Figure S3. Key pollen and spore types. 1. *Acalypha*. 2. Amaranthaceae/ Caryophyllaceae. 3. *Barringtonia*. 4. *Casuarina*. 5. Davalliaceae. 6. *Erythrina*. 7. Euphorbiaceae/ Rubiaceae. 8. *Hibiscus tiliaceus*. 9. *Homalanthus*. 10. *Hypolepis*. 11. *Leucaena*. 12. *Lycopodiella cernua*. 13. *Macaranga*. 14. Meliaceae. 15. *Nymphoides*. 16. *Pandanus*. 17. *Phyllanthus*. 18. Poaceae. 19. Polygonaceae. 20. Sapindaceae. 21. Sapotaceae. 22. Solanaceae. 23. *Trema*. 24. Trilete gemmate spore. 25. Trilete, psilate spore

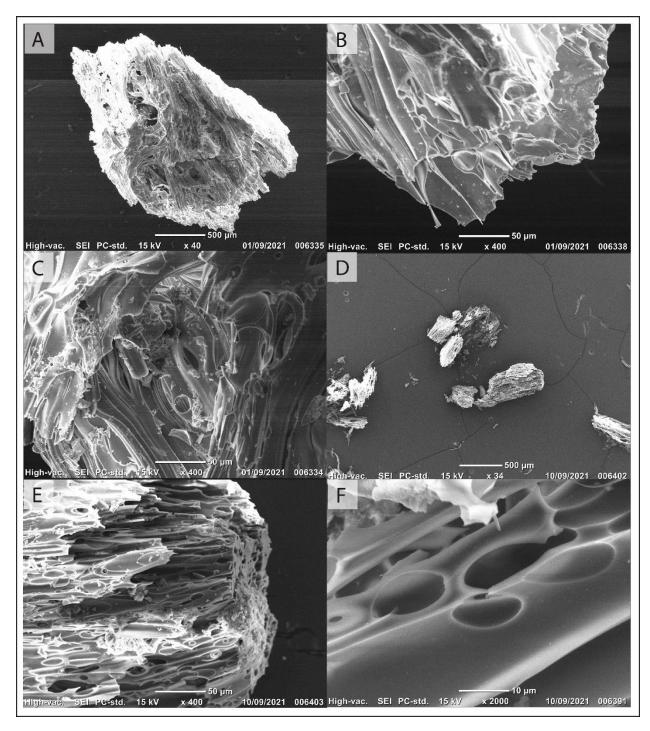


Figure S4. Scanning electron microscope images of pumice from 160–166 cm.

Table S2. Summary of the mean temporal resolution of palaeoecological methods used in this study proxies.

Proxy	Environmental	Mean time resolution
	driver	
Chironomids	Aquatic ecosystem	~160 years (~33 cm)
C/N	Source of organic matter	~10 years (~ 2cm)
Itrax	Erosion	Sub annual (0.2 mm)
Tephra	Volcanic activity??	Discrete horizon, plus dispersed shards in some levels
Pollen	Vegetation	~70 years (~14 cm) and ~5 years (1 cm) directly above and below the Kuwae ash
Micro-and macro- charcoal	Fire	~70 years (~14 cm) and ~5 years (1 cm) directly above and below the Kuwae ash

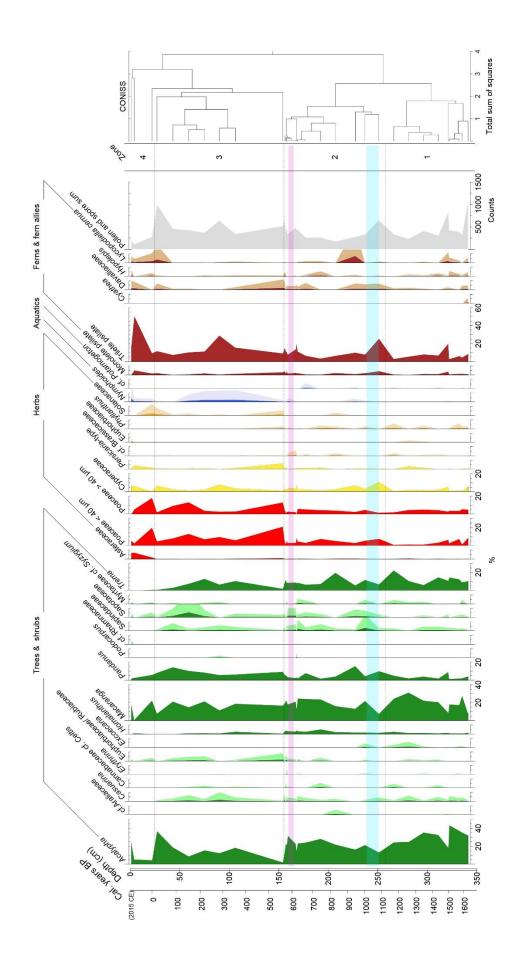


Figure S5. CONISS calculation of the pollen percentage diagram for Lake Emaotul showing pollen and spores which have been taxonomically identified and have >1% abundance. CONISS calculations were based on all taxa except those which are unidentified (Grimm, 1987). Taxa are grouped into trees and shrubs (green), dryland herbs (red), wetland herbs (yellow), other herbs (orange), aquatic plants (blue), and ferns and fern allies (brown). Taxa which occur in low abundances have been shown with x 5 exaggeration (pale shaded colours). The lilac shaded area represents the area where Kuwae volcanic ash was identified and the cyan shaded area represents the transition from wetter to drier climate.

Table S3. Canonical Correspondence Analysis correlation scores.

Environmental driver	Proxy	CCA axis-1	CCA axis-2
Magnetic susceptibility	Tephra and erosion	0.08167	0.7514
Ti/inc	Erosion	0.93972	-0.1108
Microcharcoal	Regional fires	0.46558	-0.5196
Macrocharcoal	Local fires	-0.47496	-0.5499
Precipitation	Precipitation	0.60693	-0.1712

Table S4. Palaeoecological change indicated from chironomids and pollen in aquatic and terrestrial settings attributed to volcanic ash fallout in Oceania and South America.

Continen t	Country	Site	Deposition al setting	Location	Site elevatio n (m.a.s.l)	Tephra date	Ash (or ignimbrite*) thickness (cm)	Proxy type	Response and interpretation	Recovery time (years)	Comment	Reference
Oceania	New Zealand	Review of 18 sites from North Island (Te Ika- a-Māui)	Lacustrine and wetland	Multiple at varying distances from volcanic epicentre Lake Taupo (38°47'26.78"S 175°54'14.68" E)	Multiple	1850 cal years BP (Tapou)	Multiple (42*-0.5)	Fossil pollen and charcoal	Proximal podocarp/ hardwood forests were destroyed by ignimbrite. Pteridium esculentum, Poaceae, Asteraceae and Gonocarpus increased.	Proximal forest ~200 C ¹⁴ years	Local climate was likely an important factor for recovery rates	Wilmshurs t and McGlone (1996)
Oceania	New Zealand	Matakan a	Wetland	37°29'22.59"S 175°59'59.98" E	1	665 cal. years BP (Kaharoa)	3	Fossil pollen	Leucopogon fasciculatus (shrub) and Tupeia antarctica (shrub) became extirpated from the area		Anthropogeni c activity may have contributed to vegetation changes	Giles et al. (1999)
Oceania	Tonga	Lotofoa Swamp	Wetland	19°44'48.12"S 174°18'28.80" W	3	~3800 cal. years BP	50	Fossil pollen	Vegetation change from ferns to coastal forests and then to more open conditions	>3800	No return to pre-eruption conditions has been observed perhaps due to human arrival ~2800 years ago	Flenley et al. (1999)
South America	Ecuador	Laguna Baños	Lacustrine surrounded by páramo vegetation	0°19'19.68"S 78°9'10.50"W	3821	1500 cal. years BP (Cosanga region)	>5	Fossil pollen	Slight increase in herbs (mostly Poaceae)	<100		Montoya et al. (2021), Matthews-

South America	Ecuador	Laguna Baños	Lacustrine surrounded by páramo vegetation	0°19'19.68"S 78°9'10.50"W	3821	1500 cal. years BP (Cosanga region)	>5	Chironomids and C/N ratio	Chironomid regime shift. C/N ratio increased.	>1500	Montoya et al. (2021), Matthews- Bird et al. (2017)
South America	Ecuador	Laguna Baños	Lacustrine surrounded by páramo vegetation.	0°19'10.16"S 78° 9'34.79"W	3835	Uncertain, potentially 1785-1786 CE Nevado Cayamabe or Pichincha (1553 or 1660 CE)	≥10	Diatoms and chironomids	Chironomids showed a decrease in abundance although species composition stayed the same.	Short-lived	Michelutti et al. (2015)
South America	Ecuador	Vinillos	Wetland surrounded by glacial forests	0°36′2.8″S, 77°50′48.8″W	2090	Multiple (4) between 45– 42 k. cal years BP.	18, 25, 40 and 23.	Fossil pollen, non-pollen palynomorph s and charcoal.	Slight increase in Alnus. Following the 40 cm tephra deposition fungal NPPs disappeared and there was an increase in Ilex, Melastomatacea e and Weinmannia. Eruptions were a source of ignition.	Not estimated since recurrent disturbance s occurred	Loughlin et al. (2018)
South America	Ecuador	Laguna Pindo	Lacustrine surrounded by pre- montane vegetation	1°27'7.92"S 78°4'50.82"W	1248	900 cal. years BP (Tungurahua	>5	Fossil pollen	Opening up of forest canopy	~150	Matthews- Bird et al. (2017), Montoya et al. (2021)

South America	Ecuador	Laguna Pindo	Lacustrine surrounded by pre- montane vegetation	1°27'7.92"S 78°4'50.82"W	1248	900 cal. years BP (Tungurahua)	>5	Chironomids and C/N ratio	No change in chironomids, decline in C/N ratio		Montoya et al. (2021), Matthews- Bird et al. (2017)
South America	Chile	Lake Galletué	Lacustrine	38°40'47.6"S 71°17'30.7"W	1150	~1957 CE (Llaima)	~5	Fossil pollen	Increase in Poaceae (grasses) perhaps due to percolation of pollen grains		Urrutia et al. (2007)
South America	Chile	Lake Galletué	Lacustrine	38°40'47.6"S 71°17'30.7"W	1150	~ 1957 CE (Llaima)	~5	Chironomids	Chironomids: Ablabesmyia was replaced by Parakiefferiella interpreted as a sedimentologic al change	Brief change	Urrutia et al. (2007)
South America	Argentin a	Lake Mascard i	Lacustrine surrounded by subantarctic forest	41°20′0.00"S 71°33′60.00"W	800	Two tephra layers	≥10 (both)	Chironomids	Decreased diversity and equitability	Short-lived	Massaferr o and Corley (1998)
South America	Chile	Laguna Miranda	Lacustrine	46° 8'40.00"S 73°26'40.00"W	120	Multiple (22) possibly including Mount Hudson)	Multiple (0.1–8)	Fossil pollen	Long-term increase of Nothofagus 4800–1200 cal. years BP.	Long-term following repeated disturbance s	Haberle et al. (2000)
South America	Chile	Gran Campo- 2	Wetland	52°48'37.0"S 72°55'46.0"W	70	4254 ± 120 cal. years BP (Mount Burney)	~8	Fossil pollen	Decline in Nothofagus and initiation of primary succession.	800	Fesq- Martin et al. (2004)

References

- ADLER, R. F., HUFFMAN, G. J., CHANG, A., FERRARO, R., XIE, P.-P., JANOWIAK, J., RUDOLF, B., SCHNEIDER, U., CURTIS, S., BOLVIN, D., GRUBER, A., SUSSKIND, J., ARKIN, P. & NELKIN, E. 2003. The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). *Journal of Hydrometeorology*, 4, 1147-1167.
- BLAAUW, M. & CHRISTEN, J. A. 2011. Flexible Paleoclimate Age-Depth Models Using an Autoregressive Gamma Process. *Bayesian Analysis*, 6, 457-474.
- FESQ-MARTIN, M., FRIEDMANN, A., PETERS, M., BEHRMANN, J. & KILIAN, R. 2004. Late-glacial and Holocene vegetation history of the Magellanic rain forest in southwestern Patagonia, Chile. *Vegetation History and Archaeobotany*, 13, 249-255.
- FLENLEY, J. R., HANNAN, C. T. & FARELLY, M. J. 1999. Final report on the stratigraphy and palynology of swamps on the islands of Ha'afeva and Foa, Ha'apai, Tonga. *Geography Programme Miscellaneous Publication*. Palmerston, New Zealand: Massey University.
- GILES, T. M., NEWNHAM, R. M., LOWE, D. J. & MUNRO, A. 1999. Impact of tephra fall and environmental change: a 1000 year record from Matakana Island, Bay of Plenty, North Island, New Zealand. *Geological Society, London, Special Publications*, 161, 11 26.
- GRIMM, E. C. 1987. Coniss a Fortran-77 Program for Stratigraphically Constrained Cluster-Analysis by the Method of Incremental Sum of Squares. *Computers & Geosciences*, 13, 13-35.
- HABERLE, S. G., SZEICZ, J. M. & BENNETT, K. D. 2000. Late Holocene vegetation dynamics and lake geochemistry at Laguna Miranda, XI Region, Chile. *Revista chilena de historia natural*, 73, 655-669.
- LOUGHLIN, N. J. D., GOSLING, W. D., COE, A. L., GULLIVER, P., MOTHES, P. & MONTOYA, E. 2018. Landscape-scale drivers of glacial ecosystem change in the montane forests of the eastern Andean flank, Ecuador. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 489, 198-208.
- MALONEY, A. E., RICHEY, J. N., NELSON, D. B., HING, S. N., SEAR, D. A., HASSALL, J. D., LANGDON, P. G., SICHROWSKY, U., SCHABETSBERGER, R., MALAU, A., MEYER, J.-Y., CROUDACE, I. W. & SACHS, J. P. 2022. Contrasting Common Era climate and hydrology sensitivities from paired lake sediment dinosterol hydrogen isotope records in the South Pacific Convergence Zone. *Quaternary Science Reviews*, 281, 107421.
- MASSAFERRO, J. & CORLEY, J. 1998. Environmental disturbance and chironomid palaeodiversity: 15 kyr BP of history at Lake Mascardi, Patagonia, Argentina. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 8, 315-323.
- MATTHEWS-BIRD, F., BROOKS, S. J., GOSLING, W. D., GULLIVER, P., MOTHES, P. & MONTOYA, E. 2017. Aquatic community response to volcanic eruptions on the Ecuadorian Andean flank: evidence from the palaeoecological record. *Journal of Paleolimnology*, 58, 437-453.
- MICHELUTTI, N., LEMMEN, J. L., COOKE, C. A., HOBBS, W. O., WOLFE, A. P., KUREK, J. & SMOL, J. P. 2015. Assessing the effects of climate and volcanism on diatom and chironomid assemblages in an Andean lake near Quito, Ecuador. *Journal of Limnology*, 75.
- MONTOYA, E., MATTHEWS-BIRD, F., BROOKS, S. J. & GOSLING, W. D. 2021. Forests protect aquatic communities from detrimental impact by volcanic deposits in the tropical Andes (Ecuador). *Regional Environmental Change*, 21, 1-14.
- MOORE, P. D., WEBB, J. A. & COLLINSON, M. E. 1991. *Pollen Analysis*., Oxford, Blackwell Scientific Publications.
- STOCKMARR, J. 1971. Tables with spores used in absolute pollen analysis. *Pollen et spores*, 13, 615-621.
- URRUTIA, R., ARANEDA, A., CRUCES, F., TORRES, L., CHIRINOS, L., TREUTLER, H. C., FAGEL, N., BERTRAND, S., ALVIAL, I., BARRA, R. & CHAPRON, E. 2007. Changes in diatom, pollen, and chironomid assemblages in response to a recent volcanic event in Lake Galletué (Chilean Andes). *Limnologica*, 37, 49-62.

WILMSHURST, J. M. & MCGLONE, M. S. 1996. Forest disturbance in the central North Island, New Zealand, following the 1850 BP Taupo eruption. *The Holocene*, 6, 399-411.