

Supplementary Material

TABLE S1. Correlation analysis of between larval settlement and metamorphosis and bacterial density, biofilm thickness, and CPS content.

	Bacterial density		Biofilm thickness		CPS content	
	r	p	r	p	r	p
Settlement and metamorphosis (%)	-0.064	0.596	-0.245	0.328	0.592	0.01*

TABLE S2. Effects of polysaccharides from different bacteria on settlement and metamorphosis of marine invertebrate larvae.

Type of polysaccharide	Bacteria	Marine invertebrates	Function	Reference	
Exopolysaccharide	Pseudomonas sp. strain S9	Ciona intestinalis	Decrease in exopolysacchari de reducedlarval metamorphosis	Szewzyk et al., 1991	
Exopolysaccharide	Pseudomonas marina	Janua brasiliensis	rate Induce larval settlement and metamorphosis A surface-	Kirchman et al., 1982	
Exopolysaccharide or glycoprotein	Alteromonas sp. 1	Mytilus galloprovincialis	bound cue on the biofilm might be associated with the bacterial exopolysacchari de or glycoprotein	Bao et al., 2007	

Colanic acid	Pseudoalteromo nas marina	Mytilus coruscus	Bacterial polysaccharide biosynthesis- related gene 01912 may regulate mussel settlement by producing CA via the coordination of c-di-GMP Bacterial	Peng et al., 2020
Cellulose/ Colanic acid	Pseudoalteromo nas marina	Mytilus coruscus	cellulose synthesis gene manipulates c- di-GMP that controls secretion of exopolysacchari des including cellulose and colanic acid, and regulates mussel settlement.	Liang et al., 2021
Colanic acid	Pseudoalteromo nas lipolytica	Mytilus coruscus	Deletion of AT00_17125 resulted in reduced capsular polysaccharide production and larval settlement metamorphosis	Zeng et al., 2015
	Pseudoalteromo nas marina	Mytilus coruscus	LPS directly induced larval metamorphosis.	Wu et al., 2022
Lipopolysaccharide	Cellulophaga lytica	Hydroides elegans	Lipopolysaccha ride in OMVs can induce larval metamorphosis	Freckelton et al., 2022