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1 CONSTRUCTION OF THE NETWORK

Here, we extensively explain the procedure used for constructing the transport network K. All the
essential steps are schematically drawn in Fig. S1, and are as follows.

Step 1. Initially, a pair of images (Image 1, Image 2), is given as a couple of multidimensional
arrays of dimensions (wi, hi, M = 3), with i = 1, 2. We denote with w images’ widths and
with h their heights. The third dimension has size M = 3, and corresponds to the three
RGB color channels. The color channels are flattened to obtain the tensors G and H, the
first for Image 1, and the second for Image 2. In detail, each channel is vectorized to have
dimension m × 1, with m = w1 · h1, for ga (resp. n × 1, with n = w2 · h2, for ha), which
are inflows and outflows of our multicommodity dynamics. In this way, the tensors G

and H, which are obtained stacking ga and ha, have size m × M and n × M . Entries of
G and H are in standard RGB encoding, hence they are integers ranging from 0 to 255.

To obtain the transport network K, we first generate a complete bipartite graph between
m + n = |V1| + |V2| nodes, the first m = |V1| are the pixels of Image 1, and the other
n = |V2| are those of Image 2. We then assign a cost to each edge of this graph using both
information given by pixels’ locations, and by images’ colors. In particular, we define:

Ce(θ) = (1 − θ)Ye + θXe ∀e = (i, j) (S1)

Ye=(i,j) = ||vi − vj ||2 =
√

(xi − xj)2 + (yi − yj)2 (S2)

Xe=(i,j) = ||Gi − Hj ||1 =
M=3∑
a=1

|Gia − Hja| (S3)

Figure S1. Detailed construction of transport networks. Step 1: conversion of colored images to
tensors and construction of the first complete bipartite graph. Step 2: trimming of expensive edges
and addition of the transshipment node, u1, with its links (in brown). Step 3: relaxation of mass
balance with the addition of the second auxiliary node, u2, together with its links (in magenta).
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for each i pixel of Image 1, and j pixel of Image 2. Terms Ye in Eq. (S2) contain the
Euclidean distance between any pair of pixels, whose horizontal and vertical coordinates
are stored in vectors v = (x, y). Instead, Xe contributes with colors to edges’ costs.
We model the effect of colors taking, in Eq. (S3), the 1-norm between arrays Gi, Hj ,
containing the RGB intensities in i (pixel of Image 1) and j (pixel of Image 2). Both
Xe and Ye have been opportunely rescaled in the range [0, 1]. Lastly, we use the scalar
parameter 0 ≤ θ ≤ 1 to weigh Ye and Xe in a convex combination, in Eq. (S1).

Step 2. Once Step 1 is complete, and a cost Ce is assigned to each edge of the complete bipartite
graph between the two images, we implement a trimming procedure similar to that of
[1, 2] to cut highly expensive links. In particular, we trim all edges e that have cost
Ce > τ , where τ > 0 is a threshold fixed a priori. The links between V1 and V2 that do
not get cut make up the set E12. We then add a first transshipment node, u1, to the
network, and connect it with m + n links to the sets V1 and V2. Each transshipment link
is assigned a fixed cost Ce = τ/2. This implies that one needs to pay a total cost of τ to
transport mass from a node of Image 1 (in V1) to one of Image 2 (in V2), when traversing
transshipment links.

There are several benefits in thresholding for the cost: (i) from a purely intuitive
standpoint, humans perceive distances as saturated distances [3]; (ii) many natural color
distributions are noisy and heavy-tailed, thus thresholding permits to assign a fixed
cost to outliars; (iii) thresholded distances induce a W1 distance between distributions
in standard unicommodity OT problems [2]. More practically, thresholding improves
accuracy and speed of OT [2] (see also the Computational Cost Section in this SM).

Step 3. The last step required to obtain K is the introduction of a second auxiliary node, u2,
together with its edges, to relax mass balance. In detail, in a standard OT setting∑

i Gia = ∑
j Hja = Λa > 0 holds ∀a = 1, . . . , M , i.e., two histograms to be transported

belong to the same simplex of mass Λa > 0. We relax this constraint permitting ∑i Gia ̸=∑
j Hja and penalizing Eq. (1) (main text). Particularly, we use a similar relaxation of

that in [2], which we generalize to the multicommodity setup:

J⋆
Γ(G, H) = min

P ∈Π(G,H)
JΓ(G, H) Relaxation−→

min
P

{
JΓ(G, H) + α

∑
a

∣∣∣∑j Hja −∑
i Gia

∣∣∣maxe∈E12 Ce

}
. (S4)

The intuition of Eq. (S4) is that the OT problem is penalized proportionally to the net
difference between the inflowing and the outflowing mass. Hence, two images whose colors
strongly differ return a higher cost and, in a supervised classification task, are less likely
to be assigned the same label. We fix α = 1/2 as in [1].

This penalization can be translated to the transport network with the addition of n
links, costing c = α maxe∈E12 Ce = maxe∈E12 Ce/2, connected to u2. The excess of mass
ma = ∑

j Hja−∑i Gia given by each commodity is injected u2 to guarantee that the whole
system is isolated. With this expedient one recovers exactly the relaxed OT formulation
in Eq. (S4). In fact, all the transport paths that not flow into one of the n nodes of Image
2 penalize the cost by traversing the edges connected to u2. From conservation of mass
one can see that these transport paths satisfy P a

ju2 = Hja − (1/n)∑i Gia, ∀j ∈ V2. Thus,
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summing over a and j returns exactly ∑aj P a
ju2 = ||∑j Hj −∑

i Gi||1, with the 1-norm
taken over the commodities. This is precisely the penalization we introduced in Eq. (S4).

2 EQUIVALENCE BETWEEN MULTICOMMODITY DYNAMICS AND OT SETUP

With the following derivations (similar to [4, 5]), we show that asymptotic solutions of Eqs. (3)-(4)
(main text) are equivalent to minimizers of Eq. (1) (main text). This implies that by solving the
multicommodity dynamics we find a solution of the multicommodity OT minimization problem.
More practically, for a given pair of images, running a numerical scheme on Eqs. (3)-(4) (main text)
allows us to compute limt→∞ P (t) = P ⋆, hence J⋆

Γ = JΓ|P =P ⋆ , and use the latter as a measure of
similarity between them.

More in detail, we first demonstrate the equivalence between stationary solutions of the
multicommodity dynamics and minimizers of the multicommodity OT problem introducing a
second accessory minimization problem. Stationary solutions are proven to be asymptotes of Eq. (4)
(main text) only afterwards, with the introduction of a Lyapunov functional for the multicommodity
dynamics.

2.1 Stationary solutions of the multicomodity dynamics and OT minimizers

Initially, we observe that stationary solutions of the multicommodity dynamics satisfy the relation

xe = ||Pe||2/(1+γ)
2 ∀e ∈ E, (S5)

that one can derive setting the left hand side of Eq. (4) (main text) to zero, defining P a
e =

xe(ϕa
i − ϕa

j )/Ce for e = (i, j), and γ = 2 − β. We recover an scaling identical to Eq. (S5) introducing
the following auxiliary constrained minimization problem:

min
x,P

{
1
2
∑

e

Ce

xe
||Pe||22 + 1

2γ

∑
e

Cex
γ
e

}
(S6)

s.t.
∑

e
BieP

a
e = Sa

i ∀i ∈ V, a = 1, . . . , M. (S7)

In fact, differentiating with respect to xe the objective function in Eq. (S6), and setting the
derivatives to zero, yields

−Ce

x2
e

||Pe||22 + Cex
γ−1
e

!= 0 −→ xe = ||Pe||2/(1+γ)
2 ∀e ∈ E. (S8)

Noticeably, Eq. (S6) admits a straightforward physical interpretation. In fact, the first term
J = (1/2)∑e Ce||Pe||22/xe is Joule’s first law. Particularly, transport paths can be thought of as
fluxes of mass transported through the edges of a capacitated network with resistances re = Ce/xe.
While the second term, Wγ = (1/2γ)∑e Cex

γ
e , is the cost needed to build the network infrastructure.

The constraints in Eq. (S7)—identical to Eq. (3) (main text)—are equivalent to Kirchhoff’s law,
enforcing conservation of mass.

Most remarkably, the scaling of Eq. (S8) can be also recasted in Eq. (S6) to find that JΓ = J + Wγ

(neglecting multiplicative constants). This connects the multicommodity dynamics with the objective
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function of Eq. (1) (main text). In detail,

J + Wγ = 1
2
∑

e

Ce

xe
||Pe||22 + 1

2γ

∑
e

Cex
γ
e (S9)

Eq. (S8)= 1
2
∑

e
Ce||Pe||2γ/(1+γ)

2 + 1
2γ

∑
e

Ce||Pe||2γ/(1+γ)
2 (S10)

Γ=2γ/(1+γ)= 1
Γ
∑

e
Ce||Pe||Γ2 (S11)

= 1
ΓJΓ(G, H). (S12)

To complete the mapping between the multicommodity dynamics and the minization setup, we
show that the space of transport tensors Π(G, H) is exactly the same space defined by Eq. (S7).
This can be seen with the following chain of equalities:∑

k

P a
ik −

∑
j

P a
ji = Ga

i − Ha
i ∀i ∈ V, a = 1, . . . , M (S13)

∑
k

P a
e=(i,k) −

∑
j

P a
e=(j,i) = Sa

i ∀i ∈ V, a = 1, . . . , M (S14)

∑
e

BieP
a
e = Sa

i ∀i ∈ V, a = 1, . . . , M. (S15)

Here we take the difference between the OT constraints of Π(G, H) in Eq. (S13), we then use the
definition of S in Eq. (S14), and compact the plus and minus signs using the signed incidence matrix
B in Eq. (S15). This allows us to recover Kirchhoff’s law as formulated in Eq. (S7) and Eq. (3)
(main text).

2.2 Multicommodity dynamics asymptotes: Lyapunov functional

We complete our discussion introducing the Lyapunov functional for Eq. (4) (main text) proposed
in [4, 5]. The functional reads:

Lγ [x] = 1
2
∑
ai

ϕa
i [x]Sa

i + 1
2γ

∑
e

Cex
γ
e , (S16)

and it is a multicommodity generalization of that originally introduced in [6]. This is a well-defined
Lyapunov functional for the multicommodity dynamics, in fact, along a curve x(t) solution of Eq.
(4) (main text),

dLγ [x(t)]
dt

≤ 0. (S17)

With the equality satisfied if and only if x(t) is a stationary point of Eq. (4) (main text). This can
be shown as follows. We claim that

∂Lγ

∂xe
= Ce

2

(
xγ−1

e − ||ϕi − ϕj ||22
C2

e

)
∀e = (i, j) ∈ E. (S18)
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This equality can be retrieved differentiating both sides of Eq. (3) (main text) by xe, thus obtaining

∑
j

∂Lij

∂xe
ϕa

j +
∑

j

Lij
∂ϕa

j

∂xe
= 0 ∀i ∈ V, e ∈ E, a = 1, . . . , M, (S19)

∑
j

Lij
∂ϕa

j

∂xe
= −

∑
j

Bje(1/Ce)Bieϕ
a
j ∀i ∈ V, e ∈ E, a = 1, . . . , M. (S20)

Then, multiplying Eq. (S20) by ϕa
i and summing over i one gets

∑
ij

ϕa
i Lij

∂ϕa
j

∂xe
= −

∑
ij

ϕa
i Bie(1/Ce)Bjeϕ

a
j ∀e ∈ E, a = 1, . . . , M, (S21)

further summing over a yields

∂

∂xe

∑
aj

Sa
j ϕa

j

 = −Ce
||ϕi − ϕj ||22

C2
e

∀e = (i, j) ∈ E, (S22)

where in the left hand side of Eq. (S22) we used Eq. (3) (main text). From Eq. (S22) the equality in
Eq. (S18) follows immediately. Now, thanks to Eq. (S18) we can prove that the Lie derivative of the
functional is less than or equal to zero. In fact,

dLγ

dt
=
∑

e

∂Lγ

∂xe

dxe

dt
(S23)

Eq. (S18)=
∑

e

Ce

2

(
xγ−1

e − ||ϕi − ϕj ||22
C2

e

)
dxe

dt
(S24)

Eq. (4),γ=2−β= −
∑

e

Ce

2 x2−γ
e

(
xγ−1

e − ||ϕi − ϕj ||22
C2

e

)2
≤ 0. (S25)

With the equality in Eq. (S25) that is recovered if and only if (i) xe = 0, or (ii) the scaling in
Eq. (S8) holds.

Finally, we show that the Lyapunov is identical to the total sum of dissipation and transport cost,
i.e., Lγ = J + Wγ . This can be done multiplying both sides of Eq. (3) (main text) by ϕa

i and then
summing over i and a, namely ∑

aiej

ϕa
i Bie(xe/Ce)Bjeϕ

a
j =

∑
ai

ϕa
i Sa

i (S26)

∑
e

Ce

xe
||Pe||22 =

∑
ai

ϕa
i Sa

i (S27)

where we used P a
e = xe(ϕa

i − ϕa
j )/Ce, for e = (i, j). This allows us to conclude.

In summary, we showed that the multicommodity dynamics admits a well-defined Lyapunov
functional, which is equivalent to the sum of a dissipation and an infrastructure cost. These two
contributions, which are jointly minimized by Eq. (4) (main text), when evaluated along their
minimizers correspond to the multicommodity OT cost JΓ of Eq. (1) (main text). Introducing the
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Lyapunov functional is crucial to formally show that asymptotics of the dynamics are equivalent to
minimizers of the cost, namely limt→∞ P (t) = P ⋆.

Lastly, we remark the effect of γ (resp. β) on the minimization problem. In the setting where γ > 1
(β < 1) the functional Lγ is convex, with one unique minimizer. For γ < 1 (β > 1) the functional
landscape becomes rugged and strongly non-convex, with multiple minimizers each correspondent
to a local minima of the cost. Hence, in this second scenario, running Eq. (4) (main text) permits
to converge in a stationary point, which however may not be its global minimum.

3 CROSS-VALIDATION: FLOWERS DATASET

We perform a 4-fold cross validation on both parameters used for the construction of the ground
cost, θ and τ , and on algorithms’ regularization parameters, β and ε. We briefly summarize it in
this section.

The JF30 Dataset [7] is made of 1,479 elements, divided in 30 classes. First, we separate it into
two subsets: train and test, with classes’ frequencies being the same in these subsets as in the entire
dataset. To cross-validate our methods, we further separate the train set into 4 folds of equal size,
each to be used in turn as a validation set. More in detail, each experiment is executed fixing the
validation fold and an image belonging to it, then, the Optimal Transport costs J⋆

Γ between such
image all the other images in the train set—made of the other three folds—is calculated. This
procedure is repeated for all images in the validation set, and swapping each of the 4 train folds as
validation set. We use a k-nearest neighbors classifier over J⋆

Γ to assign to an image in the validation
set its label, that is, for each validation image we consider the k train samples with lowest J⋆

Γ, and
label the validation sample with the most frequent class among these k. This allows us to calculate
the classification accuracy of a given fold, and then to average the accuracy over the 4 permutations
of the validation and train set. The total amount of experiments we ran in order to cross-validate
the model is approximately 50,000.

Results are shown in Fig. S2 and Fig. S3. These depict the average accuracy of: (A) the
multicommodity (M = 3) dynamics; (B) the unicommodity (M = 1) dynamics, both for
β ∈ {0.5, 0.75, 1, 1.25, 1.5}; (C) Sinkhorn algorithm on colored images (Sinkhorn RGB); and (D)
Sinkhorn algorithm on grayscale images (Sinkhorn GS), for ε ∈ {100, 250, 500, 750, 1000, 2500}.
Letters in parentheses refer to those of Fig. S2 and Fig. S3. The regularization parameters are
validated together with τ ∈ {0.1, 0.125} and θ ∈ {0, 0.25, 0.5, 0.75}. Both multicommodity and
unicommodity dynamics are have initial conditions xe(0) = 1, ∀e ∈ E.

All figures displayed in Fig. S2 and Fig. S3 correspond to highest accuracies returned by the k-NN
classifier, with k = 1, 2, . . . , 20. Observing the results, one can see that best performances are attained
at (τ, θ, β) = (0.125, 0.25, 1) for the multicommodity dynamics, and at (τ, θ, β) = (0.125, 0.25, 1.25)
for the unicommodity dynamics.

Noticeably, the accuracy monotonically increases (resp. decreases) with β for a fixed value of θ,
namely θ = 0 (resp. θ = 0.25). This can be addressed to the fact that, when no color information
is taken into account in the construction of the ground metric (θ = 0), it is more advantageous
to consolidate transport paths on cheap edges correspondent to pixels whose positions are close,
thus choosing a larger β. On the other hand, introducing colors in C (θ > 0), and thus creating a
more disordered ground cost matrix, favors distributing transport paths on the network (See Model
Interpretability Section in this SM).
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Remarkably, τ also has an impact on the classification accuracy of our algorithms: the larger we
set its value to be—thus trimming less edges from the transport network—the more accurate the
classification becomes. This behavior is evidently different for Sinkhorn algorithm, as explained here
below.

Cross-validation of Sinkhorn algorithm is taken a step further. Motivated by the classification
accuracy drop observed in Fig. S2, Fig. S3 [(C), (D)] when enlarging the trimming threshold from
τ = 0.1 to τ = 0.125, we fix θ and ε to the best values in Fig. S2 [(C), (D)], and progressively
reduce τ . Results are shown in Fig. S4 (A) for Sinkhorn on grayscale images, and in Fig. S4 (B) for
Sinkhorn on colored images.

Notice that both Sinkhorn GS and Sinkhorn RGB returns bell-shaped curves when changing τ . In
particular, low classification accuracy is attained when strongly reducing τ , as well as when the
trimming threshold is high (approximately τ ≥ 0.5). In the first case, many elements of the ground
cost matrix are cut, and not enough information is taken into account into the OT setup to properly
perform classification. In the second, too much noise is included in into C, which also negatively
affects classification. More in detail, we observe in Fig. S4 (a, inset), that Sinkhorn GS performs
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Figure S2. Cross-validation results for τ = 0.1. Figures are accuracy values obtained with the
4-fold cross validation on JF30. Cells are colored with a darkest-to-brightest palette based on the
accuracies. Subplots correspond to: (A) the multicommodity dynamics, (B) the unicommodity
dynamics, (C) Sinkhorn on colored images, and (D) Sinkhorn on grayscale images.
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Figure S3. Cross-validation results for τ = 0.125. Figures are accuracy values obtained with the
4-fold cross validation on JF30. Cells are colored with a darkest-to-brightest palette based on the
accuracies. Subplots correspond to: (A) the multicommodity dynamics, (B) the unicommodity
dynamics, (C) Sinkhorn on colored images, and (D) Sinkhorn on grayscale images.
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best when τ = 0.05. For Sinkhorn RGB, i.e. Fig. S4 (b, inset), there is a plateau for all values of the
threshold within the interval [0.05, 0.1].

These observations lead us to the choice of τ = 0.05 for Sinkhorn GS, that we re-cross-validate
ranging θ ∈ {0.25, 0.5} and ε ∈ {100, 250, 500, 750, 1000, 2500}. Looking at the results in Fig. S5,
we note that optimal parameters for Sinkhorn GS are (θ, ε) = (0.25, 500) and (θ, ε) = (0.5, 500),
which return identical classification accuracy.

As for Sinkhorn RGB, we fix the trimming threshold at the two ends of the plateau in Fig. S4
(b, inset), τ = 0.05 and τ = 0.1, and re-cross-validate them with (θ, ε) = (0.25, 100) and (θ, ε) =
(0.5, 1000). Here, we choose two disparate values of θ and ε not being able to observe a clear relation
between these two variables in Fig. S2 (C) and Fig. S3 (C). Namely, ε = 100 (low) and θ = 0.25
perform better for τ = 0.125, in contrast to ε = 1000 (high) and θ = 0.5 for τ = 0.1. Results are in
Table S1, optimal parameters are (θ, τ, ε) = (0.25, 0.05, 100).
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Figure S4. Sinkohrn’s cross-validation results varying τ . Subplots correspond to: (A) Sinkhorn
GS, (B) Sinhorn RGB. In each subplot, circular markers correspond to the accuracy values of each
fold, instead squares and bars represent their average and standard deviations. In the insets, we
refined the grid of τ in an interval of interest, where classification accuracy is peaked.
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obtained with the 4-fold cross validation on JF30. Cells are colored with a darkest-to-brightest
palette based on the accuracies.
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Algorithm Hyperparameters Class. accuracy
θ τ ε k [%] (↑)

Sinkhorn RGB

0.25 0.05 100 1 58.4
0.5 0.05 1000 1 53.6
0.25 0.1 100 1 53.2
0.5 0.1 1000 1 49.0

Table S1. Refined cross-validation results for Sinkhorn RGB. Rows are sorted (from bottom to top)
using the average percent accuracy obtained with the 4-fold validation (from worst to to best).

4 EXPERIMENTAL DETAILS: FRUITS DATASET

Here, we describe in detail the experimental setup designed for the Fruit Dataset (FD) [8]. FD
consists of 163 images of 15 fruit types. We split the whole dataset into train and test sets, each
with 70% and 30% of the available images, respectively. As for the other dataset, classes’ frequencies
are the same in these subsets as in the entire dataset. Given the rather small size of this dataset, we
directly perform classification comparing train and test. All the experiments have been executed
with the two best performing parameter configurations of ε and θ, cross-validated on JF30, for
Sinkhorn-based methods. These are: (θ, ε) = (0.25, 500), (θ, ε) = (0.5, 500) for Sinkhorn GS [see
Fig. S2 (D)], and (θ, ε) = (0.5, 1000), (θ, ε) = (0.5, 750) for Sinkhorn RGB [see Fig. S2 (C)]. For
our dynamics, we selected the two best performing values of β, for θ = 0 and θ = 0.25. Namely,
(θ, β) = (0.25, 1), (θ, β) = (0.25, 1.5) for the multicommodity dynamics [see Fig. S3 (A)], and
(θ, β) = (0.25, 1.25), (θ, β) = (0, 1.5) for the unicommodity dynamics [see Fig. S3 (B)]. The trimming
threshold is ranged in τ ∈ {0.04, 0.05, 0.06, 0.07}.

5 IMAGE PREPROCESSING

The elements of both datasets are processed in the following way. First, each image is coarsened with
an average pooling, the only input needed for this step is the size of the square mask, ms. Its stride
is in fact set to stride = ms, and the padding to pad = 0. All images were conveniently trimmed
so that both their widths and heights are divisible by the pooling mask size. We set ms = 40 for
JF30, and ms = 30 for FD. Furthermore, we smooth the images using a Gaussian filter on each color
channel, with standard deviation σ = 0.5.

Moreover, to convert colored images into grayscale ones, which are given as input to Sinkhorn
GS and to our unicommodity dynamics (M = 1), we preproces them as follows. Let (R, G, B),
be the three color channels composing each pixel of a colored image, these are converted into a
unique channel (its grayscale counterpart), whose intensity I is calculated with the weighted sum
I = 0.2125R + 0.7154G + 0.0721B. The weights correspond to those used by cathode-ray tube
(CRT) phosphors as they are more suitable to represent human perception of red, green and blue
than equally valued weights [9].

5.1 Color distributions of images

As shown in Table I (main text), for the multicommodity and the unicommodity dynamics, optimal
values of the trimming threshold τ are much lower in the Fruit Dataset [8] than in the Jena Flowers
30 Dataset [7]. This can be addressed to the fact that color distributions of fruits, belonging to the
first dataset, are drastically light-tailed compared to those of flowers in the second dataset. Thus,
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Figure S6. Color distributions in the two datasets. Subplots (A), (B) are relative to FD, subplots
(C), (D) to JF30. In (A), (C) we plot four random images drawn from the two datasets. In (B), (D)
the average color intensities (properly normalized to sum to one) of 100 random samples extracted
from the two datasets. The plots correspond to red = R, green = G, and blue = B.

the cost C is naturally noisier in the latter case, and a larger trimming is necessary to remove such
noise from classification.

Most of the noise in pictures of flowers comes from the background. In fact, while all flowers are
photographed in nature, fruits are depicted on a white background. This can be seen in Fig. S6
(A)-(D). In subplot (A) we show four images randomly sampled from the Fruit Dataset, in (C) four
random samples of the Jena Flowers 30 Dataset. In (B) and (D) we plot the average color intensity
of the RGB channels for 100 random samples belonging to the two datasets. Here, the histograms
in (B) are relative to the fruits, those in (D) to the flowers. From the plots it can be clearly seen
that the color distributions of Fig. S6 (B) are starkly peaked around (R, G, B) = (255, 255, 255) =
white in standard RGB encoding.

6 SINKHORN BENCHMARKS

In our experiments, we compare the multicommodity and unicommodity dynamics against Sinkhorn
algorithm, popularized by the seminal work of [10]. The idea of Sinkhorn is to regularize the standard
OT problem by adding an entropic barrier to the cost function. More in detail, and following the
notation adopted in our manuscript, the minimization problem proposed in [10] is:

min
P s.t.

∑
j Pij=gi∑
i Pij=hj

∑
ij

PijCij − εh(P )

 , h(P ) = −
∑
ij

Pij log Pij . (S28)

Here transport paths P , which generally lie in the polyhedral set described by the constraints∑
j Pij = gi ∀i and ∑

i Pij = hj ∀j, are smoothed by the entropy h(P ). This trick makes the
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optimization problem strictly convex, and permits to solve it with a very efficient matrix scaling
algorithm—Sinkhorn’s fixed point iteration.

We generalize the problem in Eq. (S28) in order to take in account transport tensors, G and H,
which carry information of multiple color channels, and transport paths P . In detail, we propose
the following minimization problem for each commodity—color channel—a,

min
P a s.t.

∑
j P a

ij=Ga
i∑

i P a
ij=Ha

j

Ja
sink =

∑
ij

P a
ijCij − εh(P a)

 , h(P a) = −
∑
ij

P a
ij log P a

ij . (S29)

This allows to efficiently compute, using Sinkhorn’s scaling, an Optimal Transport path P a
opt for

each commodity, together with its correspondent optimal cost Ja
sink,opt = Ja

sink|P a=P a
opt

. Finally, the
Optimal Transport cost for colored images is calculated as JRGB

sink,opt = (1/3)∑M=3
a=1 Ja

sink.

7 MODEL INTERPRETABILITY

In this section we discuss the effect that the parameters θ, τ , and β have one the OT setup.

First, we explain the experiment in Fig. S7. We start by sampling two images of the FD dataset
belonging to the same class. These images have identical shape, i.e. width w and height h equal
to 20. They are displayed on the leftmost part of Fig. S7. From these two images, we obtain the
tensors G and H, that are transported in the OT problem. The first, G, is constructed using all the
pixels on the 11th row of Image 1, thus its dimension is m × M = 20 × 3. The same row of Image 2
is used to build H, also in this case its size is n × M = 20 × 3.

The two tensors enter in Eq. (1) (main text) together with a (20 × 20)-dimensional cost C,
which is built with pixels’ locations and color information using Eqs. (S1)-(S3). The scope of this
discussion is to refine the intuition on these formulas, and on the effect that θ and τ have on C.
In Fig. S7 we plot the ground cost C for the two tensors G and H, for θ = {0, 0.25, 0.5, 0.75} and
τ = {0.1, 0.25, 0.5, 1}. All entries Cij > τ—which correspond to those edges that are trimmed from
the transport network—are colored in white.

Notice that for θ = 0 all costs are symmetric. Indeed in this case Cij = min{Yij , τ}, with Y that
is containing the Euclidean distances between pixels’ coordinates, i.e. Eq. (S2). Here, decreasing
the trimming threshold τ progressively sparsifies the banded matrices drawn in the first column
of Fig. S7, with limit cases being C = diag[C0,0, C1,1, . . . , C19,19]—for τ sufficiently small, and
C = Y —for τ ≥ maxij Yij . On the other hand, the symmetry is gradually broken as θ is increased,
namely, when colors of the images are are used to build into C. This is clearly depicted in Fig. S7,
where the heatmaps get progressively disordered for larger values of θ (from left to right).

To further expand this discussion, we design a second experiment, schematically represented in
Fig. S8. Here, we solve the OT problem between two tensors, G and H, built similarly to those of
Fig. S7. Particularly, we consider three central pixels of the 11th rows of Image 1 and Image 2, as
drawn in the leftmost part of the Figure, so that both ga and ha are 3-dimensional arrays for all
a = 1, . . . , 3, and C is a (3 × 3)-dimensional matrix.

Depending on the values of θ, the ground cost C is either symmetric (θ = 0), and computed only
using pixels’ coordinates, or strongly irregular (θ = 0.75), since colors of images are taken into
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Figure S7. Effect of θ and τ on OT. On the left, we display the two samples used to build the
ground costs C. Highlighted rows in blue and orange are those considered to extract G and H. On
the right side of the panel we plot C for θ = {0, 0.25, 0.5, 0.75} and τ = {0.1, 0.25, 0.5, 1}. White
regions correspond to trimmed values, i.e. entries of C that are larger than τ .

account. In the first case, the transport network connecting the images has also a symmetric structure.
Here, elements along the diagonal of the cost—correspondent to horizontal edges connecting orange
and blue nodes with the same index—are much cheaper than all the other entries. This is due to the
fact that the Euclidean distance between two pixels with the same position is zero (practically set to
a safety default value ϵ = 10−5). Conversely, in the second case, introducing colors in the ground cost
translates into having higher values along the diagonal elements of C. Here, colors—which distribute
more smoothly on images—smooth out the cost as well, whose entries are more homogeneous.

As shown in Fig. S2 and Fig. S3, taking a purely Euclidean ground cost C, i.e., θ = 0, returns
higher classification accuracy when β = 1.5. Instead, building C mostly with color information, thus
setting θ = 0.75, favors β = 0.5. We address this tendency to the effect that β has on transport
paths’ consolidation, and we represent it on the rightmost portion of Fig. S8, where we plot the
Optimal Transport paths {P 1, P 2, P 3} obtained running Eqs. (3)-(4) (main text) on the OT setup
just discussed. In detail, for θ = 0, horizontal edges in the transport network are much cheaper
than the others, therefore strong consolidation of transport paths (β = 1.5) benefits classification.
Conversely, since for θ = 0.75 the entries of C are more homogeneous, distributing transport paths
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Figure S8. Effect of β on OT. In the leftmost portion of the panel we plot Image 1 and Image 2,
used in the OT problem. From these we extract the (3 × 3)-dimensional tensors G and H. These
are drawn together with a heatmap of the cost C, and with the correspondent transport network.
Color scales of edges and of entries of C are identical. We also use the same numbering and color
scheme for tensors’ entries, indexes of C, and network nodes. Brown and magenta auxiliary nodes
and edges are added after trimming, and after relaxing Kirchhoff’s law. On the right side of the
panel we plot the transport network again, but with edge thickness proportional to the Optimal
Transport paths retrieved from Eqs. (3)-(4) (main text), and with colors correspondent to those of
the commodities a. Node sizes are proportional to the values of ga and ha, for a = 1, . . . , 3.

(β = 0.75) naturally reflects the topology of the transport network and allows to achieve better
classification performances.

Lastly, we remark that transport paths do not pass through any transshipment edge (colored
in brown in Fig. S8) since τ is conveniently set to be sufficiently large. The auxiliary edges for
Kirchhoff’s law relaxation (colored in magenta) are instead traversed by transport paths since G
and H are not normalized.

8 COMPUTATIONAL COST

8.1 Analytical discussion

Considerable effort has been spent to reduce the high complexity burden of OT problems. The
O(|V |2/ε3) baseline of Sinkhorn algorithm [11, 12, 10], where |V | is the size of the histograms
transported and ε the parameter enforcing entropic regularization, is constantly improved. Notable
recent results are the class of stochastic optimization algorithms proposed in [13], that have
been ameliorated using greedy alternatives [14] to achieve ε-approximation of the 1-Wasserstein
distance between two probability distributions in O(|V |2/ε2) arithmetic operations [15]. Recently,
an Adaptive Primal-Dual Accelerated Gradient Descent (APDAMD) scheme with complexity
O(min{|V |9/4/ε, |V |2/ε2}) for the same ε-perturbed problem has been presented in [16].

In principle, our multicommodity method has a computational complexity of order O(M |V |2) for
complete transport graph topologies, i.e., when edges in the transport network K are assigned to
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all pixels’ pairs. Nonetheless, we achieve a substantial decrease in complexity by sparsifying the
graph with the trimming procedure of [1, 2]. Similarly to [1], the final complexity of our algorithm is
O(M |V |). This improvement can be formally justified as follows, we start from a complete bipartite
graph with |E| = |V |2/4 (for simplicity m = n = |V |/2 is assumed). First, we trim expensive links,
and reduce the number of edges of the transport network to ⟨K⟩|V | + |V |, where ⟨K⟩ is the average
number of edges connected to a node that are not trimmed by τ , and the second term |V | counts
the number of inflowing and outflowing transshipment links. Second, we add |V |/2 links to the
transport network to enforce Kirchhoff’s law penalization, so that the final number of links amounts
to |E| = |V |(⟨K⟩ + 3/2), which is linear with respect to the number of nodes.

Additionally, it is shown [17] that for β = 1, the Optimal Transport paths of the unicommodity
OT problem on sparse topologies can be recovered with z time steps as in Eq. (3) (main text), with
O(1) < z < O(|E|0.36). This bound has been found using a backward Euler scheme combined with
the inexact Newton-Raphson method for the update of x, and solving Kirchhoff’s law using an
algebraic multigrid method.

8.2 Experimental runtimes benchmarking against Sinkhorn

We compare the runtime performances of the multicommodity dynamics of Eqs. (3)-(4) (main
text), against the regularized Sinkhorn algorithm of [18, 19], implemented in POT: Python Optimal
Transport [20], and for which we set the convergence threshold to ε̃sink = 0.01. Our implementation
uses a forward Euler scheme for the discretization of Eq. (4) (main text), and a sparse direct
linear solver (UMFPACK) for Eq. (3) (main text). Our code was run until convergence, achieved if
(JΓ(n + 1) − JΓ(n))/∆t < ε̃dyn, i.e. when the relative cost difference evaluated at two consecutive
iteration is below ε̃dyn = 1. We set the discretization time step ∆t = 0.5.

All codes are executed on 20 pairs of images, randomly sampled from the Jena Flowers 30 Dataset
[7] and the Fruit Dataset [8]. We compare our multicommodity dynamics (M = 3) against Sinkhorn
algorithm on colored images, and the unicommodity dynamics (M = 1) against Sinkhorn on
grayscale images.

Results are shown in Fig. S9. Here, we plot elapsed times for the experiments on JF30 and on
FD in the panels (A)-(C) and (D)-(F), respectively. Subplots from left to right represent runtimes
for the algorithms executed on grayscale images [(A), (D)], on colored images [(B), (E)], and for
Sinkhorn executed in both setups [(C), (F)].

Observing Fig. S9 [(A), (D)], we notice that runtimes for the multicommodity dynamics are larger
than Sinkhorn’s. Our algorithm converges faster if β < 1, i.e., when the multicommodity transport
cost is convex. Setting β > 1 negatively affects convergence times. In general, for all values of
β, increasing the trimming threshold τ , and thus the average number of edges in the transport
networks, leads to slower convergence. Sinkhorn algorithm is not as dependent on |E|, e.g., in Fig. S9
(A), runtimes are approximately constant. Moreover, coherently to what expected [10], increasing
the effect of the entropic barrier—enlarging ε—makes the algorithm faster. In Fig. S9 [(B), (E)] we
observe a similar trend as in Fig. S9 [(A), (D)]. However, in this case Sinkorn algorithm with low
regularization, ε = 100, has runtimes comparable to those of our method. Lastly, in Fig. S9 [(C),
(F)], we explicitly plot runtimes for Sinkhorn on both colored and grayscale images, for different
values of the regularization parameter ε. In general, the algorithm on colored images is slower, and
increasing the trimming threshold leads to higher runtimes. Moreover, we observe again that larger
value of ε makes the algorithms faster.
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Figure S9. Runtimes of algorithms. Subplots (A)-(C) are experiments on JF30, subplots (D)-(F)
are those on FD. In (A), (B), (C), and (D) we plot with red diamonds runtimes of our dynamics,
with M = 1 in (A), (D) and M = 3 in (B), (E). Blue triangles are denote runtimes of Sinkhorn.
Color shades correspond to different values of the regularization paramters. In (C) and (F) we show
runtimes of Sinkhorn against ε, with orange and green markers used for colored and grayscale images,
respectively. Color shades here denote different values of the trimming threshold τ . Errorbars are
standard deviations obtained over 20 random image pairs.
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