

Venation patterns of cotyledons of PLU-treated seedlings.

DIC images of cleared cotyledons of wild-type seedlings treated with PLU for 11 days. Scale bars: 200 $\mu m.$

Effects of Yucasin on PLU-treated seedlings

Photos of 8-dpi wild-type seedlings grown on media containing indicated concentrations of Yucasin with or without 40 μ M PLU from 1 to 8 dpi (Scale bars: 1 cm).

Venn diagram of PLU-upregulated genes and the previously reported gene lists.

Venn diagram was drawn using PLU-upregulated genes (PLU_up) by our RNA-seq analysis and the publicly available lists of auxin-induced genes (Auxin_up), CIM-induced genes (CIM_up), and Lateral Root Initiation-related genes (LRI_up) (Sugimoto et al., 2010; Uchida et al., 2018; Vanneste et al., 2005).

Vorcano blot of up- and down-regulated genes by 1 hour PLU treatment

The fold change (log2) is plotted on the x-axis, and FDR (p-value, the negative log10) is plotted on the y-axis by comparing RNA-seq data of 1 hour PLU treatment with mock treatment. Colored dots indicate genes with more than 2-fold expression change (FDR<0.01). Up- and down-regulated genes are shown in blue and red. Respectively. Dots with dark color indicate HSE-containing genes.

Effects of GDA on seedling griowth

Wild-type seedlings were grown with indicated concentrations of GDA from 1 to 14 dpi and observed at 14 dpi. Scale bars: 1 cm.

Expression levels of TIR1/AFB genes after PLU treatment

Relative expression levels of *TIR1/AFB* genes normalized against *ACTIN8* expression were determined by qRT-PCR. 5-dpi wild-type seedlings were treated with or without 40 μ M PLU and/or 20 μ M GDA for 2 days, and total RNA from whole seedlings was subjected to qRT-PCR. Dots and crossbars indicate data points of individual samples and the mean of three biological replicates, respectively, in each condition. The mean value of mock-treated samples is set at 1. Asterisks and n.s. indicate significant differences at P < 0.05 and no significant difference, respectively, based on Welch's *t*-test (two-tailed).

Supplementary Table S1

List of plasmids constructed in this study

Plasmid	Bacteria	Plant	Note
NOSt in pAN19	Amp	-	NOS terminator was amplified from pBI101 by PCR
linker-3xVenus:NOSt in pAN19	Amp	-	linker-3xVenus was transferred from pDONR/Zeo:cENF2-3xVenus
linker-3xVenus:NOSt in pBIN50	Kan	Kan	linker-3xVenus:NOSt was transferred from pAN19/linker-3xVenus:NOSt
ELuc-3xVenus:NOSt in pBIN50	Kan	Kan	ELuc CDS was amplified from pEluc-PEST by PCR
PLT2pro:ELuc-3xVenus:NOSt in pBIN50	Kan	Kan	PLT2 promoter was amplified from Col genome by PCR
PLT3pro:ELuc-3xVenus:NOSt in pBIN50	Kan	Kan	PLT3 promoter was amplified from Col genome by PCR
CUC2pro:ELuc-3xVenus:NOSt in pBIN50	Kan	Kan	CUC2 promoter was amplified from Col genome by PCR
linker-Venus:NOSt in pAN19	Amp	-	linker-Venus was amplified from pBIN50/linker-3xVenus:NOSt plasmid by PCR
TIR1pro:TIR1-Venus:NOSt in pAN19	Amp	-	TIR1 promoter and TIR1 cDNA was amplified from Col genome and Col total cDNA by PCR
TIR1pro:TIR1-Venus:NOSt in pBIN30	Kan	BASTA	TIR1pro:TIR1-Venus:NOSt was transferred from pAN19/TIR1pro:TIR1-Venus:NOSt

Supplementary Table S2

List of primers used in this study

Amplicon	Primer name	Sequence		
NOS terminator	NOS-ter-SacI-F	TACCGAGCTCTCCCCGATCGTTCAAACATTTG		
	NOS-ter-R	TAGAATTCGATCTAGTAACATAGATGACACC		
ELuc CDS	ELuc-F-NEB	AAGCTTCCCGGGGTCGACTGGATCCATGGAGAGAGAGAGA		
	ELuc-R-linker-NEB	TCACACCACCGGTCGAGGGGCTGCCTCCGCCGCTGCCTCCGCCCAGCTTAGAAGCCTTCTCCATCAG		
PLT2 promoter	PLT2-pro-F-NEB	CTATGACCATGATTACGCCATATCAGGTTTAGAGAATTCTCAAGAAATAGTC		
	PLT2-pro-R-NEB	ACGTTCTTCTCTCTCCATTTCCCTTTTCTTGGAATCAAAGCTTAAAC		
PLT3 promoter	PLT3-pro-F-NEB	CTATGACCATGATTACGCCACTTTCCATGTACTACTACTACAATATCAATTGTG		
	PLT3-pro-R-NEB	ACGTTCTTCTCTCTCCATAAACTTTCTTATAAAAACAATTTTACTTTTTCTCTCTCC		
CUC2 promoter	CUC2-pro-F-NEB	CTATGACCATGATTACGCCAGGTAGGGATCGAGTCTGAGAAAG		
	CUC2-pro-R-NEB	ACGTTCTTCTCTCTCCATTAAGAAGAAGAAGATCTAAAGCTTTTGTTTG		
linker-Venus	linker-Venus-F-XhoI	CAACCTCGAGGGTGGCTCGACCGGTGGTG		
	Venus-R-SacI	TACCGAGCTCCTACTTGTACAGCTCGTCCATG		
TIR1 promoter	TIR1-pro-F-Sall	CAACGTCGACGAGTACGAAACCCGAGACTAGGAG		
	TIR1-pro-R-BamHI	CGGGATCCTGCGGCCAAATAACCTCGAG		
TIRI CDS	TIR1-SmaI-F	TCCCCCGGGCCGCAATGCAGAAGCGAATAGCCTTG		
	TIR1-nonstop-SalI-R	CAACGTCGACTAATCCGTTAGTAGTAATGATTTGCCTG		
ACT8 qRT-PCR	ACT8-qF	CAAGGAGAAGCTTTCCTTTGTC		
	ACT8-qR	AGTTGTAAGTTGTCTCGTGGAT		
TIR1 qRT-PCR	TIR1-qF	GCCTTTTGTCATGGAACCAAAT		
	TIR1-qR	ATTTGACGGCAGAAGTAGAGAA		
AFB1 qRT-PCR	AFB1-qF	CTTATCTGGTCTCTGGGATGTC		
	AFB1-qR	TTGTCCTCAATCAAGTCCATCA		
AFB2 qRT-PCR	AFB2-qF	GAGCAAGTATGAAACAATGCGA		
	AFB2-qR	CAGTCCGGTACAGATACAACTT		
AFB3 qRT-PCR	AFB3-qF	AAAACTGTCCAAACTTCATCCG		
	AFB3-qR	GCGTACATACCGATGTAGAGAA		

Supplementary Table S3

List of enriched GO categories of PLU-upregulated genes

GO category with more than 3-fold enrichment

GO category	Number of genes	Fold enrichment	P-value
response to endogenous stimulus (GO:0009719)	108	4.1	6.23E-35
response to hormone (GO:0009725)	105	4.04	3.69E-33
response to auxin (GO:0009733)	47	11.79	1.45E-30
response to organic substance (GO:0010033)	119	3.28	3.16E-30
cellular response to hypoxia (GO:0071456)	27	10.91	1.35E-15
cellular response to decreased oxygen levels (GO:0036294)	27	10.82	1.64E-15
cellular response to oxygen levels (GO:0071453)	27	10.78	1.80E-15
response to hypoxia (GO:0001666)	30	8.97	2.11E-15
cellular response to chemical stimulus (GO:0070887)	70	3.3	2.46E-15
response to decreased oxygen levels (GO:0036293)	30	8.75	3.96E-15
response to oxygen levels (GO:0070482)	30	8.7	4.62E-15
response to abscisic acid (GO:0009737)	40	3.6	1.66E-08
response to alcohol (GO:0097305)	42	3.4	2.76E-08
regulation of hormone levels (GO:0010817)	21	6.65	9.06E-08
cellular response to endogenous stimulus (GO:0071495)	40	3.24	3.75E-07
response to water deprivation (GO:0009414)	35	3.38	2.02E-06
response to acid chemical (GO:0001101)	37	3.23	2.08E-06
cellular response to hormone stimulus (GO:0032870)	37	3.09	6.95E-06
response to water (GO:0009415)	35	3.15	1.18E-05
response to osmotic stress (GO:0006970)	31	3.35	2.56E-05
response to organonitrogen compound (GO:0010243)	25	3.73	1.09E-04
defense response to bacterium (GO:0042742)	32	3	1.69E-04
regulation of phenylpropanoid metabolic process (GO:2000762)	7	23.31	2.18E-04
response to fungus (GO:0009620)	31	3.01	2.67E-04
response to nitrogen compound (GO:1901698)	26	3.18	1.15E-03
regulation of secondary metabolic process (GO:0043455)	9	10.35	1.52E-03
toxin metabolic process (GO:0009404)	10	8.19	2.61E-03
defense response to fungus (GO:0050832)	23	3.16	5.98E-03
cytokinin catabolic process (GO:0009823)	4	64.39	6.61E-03
response to light intensity (GO:0009642)	16	4.14	9.37E-03
hormone catabolic process (GO:0042447)	4	48.29	1.53E-02
response to chitin (GO:0010200)	14	4.39	2.08E-02
auxin transport (GO:0060918)	8	7.88	4.27E-02