Appendix A. The flow chart of IWGAN.
Appendix Figure 1 shows the flow chart of IWGAN.

Appendix Figure 1. The flow chart of IWGAN.

Appendix B. The steps and the flow chart of IWOA-CNN.
The steps of IWOA-CNN are as follows and Appendix Figure 2 shows the flow chart of IWOA-CNN:
Step 1: Set the relevant parameters of the IWOA-CNN algorithm, including the whale population size N, the number of iterations t, and the spatial dimension Dim (the dimension is determined by the optimization range of the parameters);
Step 2: Encode the CNN hyperparameters to be optimized into whale individuals in the IWOA-CNN algorithm in the form of real numbers, each individual as a structure of CNN, and then use the Logistic chaotic mapping method to initialize the population;
Step 3: Initialize CNN weights randomly, and select the root mean square error MSE as the fitness function value to calculate individual fitness;
Step 4: Update the individual according to the IWOA algorithm, and determine p_ best (i.e. the best CNN parameters) and g_ best (i.e. the best CNN structure);
Step 5: Judge whether the iteration termination condition is satisfied. If it is satisfied, output the optimal individual g_ Best, otherwise return to step 3 to continue.

Appendix Figure 2. The flow chart of IWOA-CNN.
[bookmark: _Hlk127775586]Appendix C. The network structure of generator and discriminator.
The generator uses a 7-layer network structure, and the input of the network is a 6-dimensional implicit variable. Since the reservoir dispatch plan data is one-dimensional, the data dimension is expanded using the sampling layer 1D and reduced using the convolution layer 1D. The output convolution layer of the generator network uses the Tanh activation function, while the remaining network layers use the LeakyReLU function to prevent the gradient from disappearing. The size and number of convolution nuclei are determined by a large number of experiments. The generator uses four layers of convolution. The convolution cores are 3, 3, 3, 5, and the number of convolution cores is 64, 32, 16, 6. The number of output convolution cores is consistent with the evaluation index data dimension of the reservoir dispatch plan. The network structure of the generator is shown in Appendix table 1.
Appendix table 1 The network structure of IWGAN generator
	Layer
	Layer name
	Index
	Parameters

	1
	Full connection layer
	Number of neurons
	128×6

	
	
	Activation function
	LeakyReLU

	2
	Up Sampling Layer 1D
	Up Sampling Factor
	2

	3
	Convolution Layer 1D
	Convolution Kernel Size
	3

	
	
	Number of convolution cores
	64

	
	
	 Step
	1

	
	
	Activation function
	LeakyReLU

	4
	Up Sampling Layer 1D
	Sampling Factor
	2

	5
	Convolution Layer 1D
	Convolution Kernel Size
	3

	
	
	Number of convolution cores
	32

	
	
	 Step
	1

	
	
	Activation function
	LeakyReLU

	6
	Convolution Layer 1D
	Convolution Kernel Size
	3

	
	
	Number of convolution cores
	16

	
	
	 Step
	1

	
	
	Activation function
	LeakyReLU

	7
	Convolution Layer 1D
	Convolution Kernel Size
	5

	
	
	Number of convolution cores
	6

	
	
	 Step
	1

	
	
	Activation function
	Tanh

The discriminator uses an eight-layer network structure, which consists of three convolution layers and two maximum pooling layers. The convolution kernel size is always 3, the number of convolution cores is 32, 64 and 128, the pooling layer decreases by 2, the activation function is used the same as the generator, and Flatten layer is added after the last pooling operation, and Full connection layer and Dropout layer are added after the last convolution operation to prevent fitting. The output of the discriminator network represents the probability that the input data is real data, so the activation function does not use the Sigmoid function but uses the Tanh activation function. The network structure of the discriminator is shown in Appendix table 2.
Appendix table 2 The network structure of IWGAN discriminator
	Layer
	Layer name
	Index
	Parameters

	1
	Convolution Layer 1D
	Convolution Kernel Size
	3

	
	
	Number of convolution cores
	32

	
	
	 Step
	1

	
	
	Activation function
	LeakyReLU

	2
	Maximum Pooling Layer
	Sampling Window
	2

	3
	Convolution Layer 1D
	Convolution Kernel Size
	64

	
	
	Number of convolution cores
	1

	
	
	 Step
	LeakyReLU

	
	
	Activation function
	3

	4
	Maximum Pooling Layer
	Sampling Window
	2

	5
	Convolution Layer 1D
	Convolution Kernel Size
	3

	
	
	Number of convolution cores
	128

	
	
	 Step
	1

	
	
	Activation function
	LeakyReLU

	6
	Full connection layer
	Number of neurons
	64

	
	
	Activation function
	LeakyReLU

	7
	Dropout Layer
	Dropout Probability
	0.4

	8
	Full connection layer
	Number of neurons
	1

	
	
	Activation function
	Tanh

Appendix D. The training process of IWGAN.
The training process of IWGAN model is divided into pre-training and formal training. The purpose of pre-training is to ensure that the loss function of the discriminator can guide the training of the generator more accurately during formal training.
(1) Pre-training: first, the root mean square error is used as the loss function of the generator to train. As the number of training increases, the loss function tends to decrease, and then the sample data generated by the generator continuously approximates the true data distribution. The more similar the generated sample data is to the real sample data, the more accurate the subsequent discriminator training will be.
(2) Formal training: after the pre-training is completed, the generator and discriminator are formally alternated for antagonistic training. First, a random sample is taken from the Gauss noise, and a set of sampled noise is input into the generator to get a set of generated sample data. At this time, the generator has not started training. Then, a set of real sample data is randomly sampled and input into the discriminator with the sample data just generated for training. Adam optimization algorithm is used to update the network parameters of the discriminator and minimize the loss function during training. The generator is then trained, the discriminator is fixed, and the network parameters are updated by calculating the generator's loss function. The discriminator is trained five times and the generator is trained one time.
At the beginning of the training, the distribution of the sample data generated by the generator is very similar to that of the real sample data, and the discriminator can easily distinguish between true and false. As training progresses, the sample data generated by the generator approximates the true data distribution more and more, making it difficult for the discriminator to judge. Generators and discriminators are trained against the game to reach the Nash balance. The distance between the real data and Wasserstein that generates the distribution of the data is close to 0, and the training of the whole IWGAN model ends here.

Appendix E. Optimal CNN Model Structure
The relationship between the structure of CNN model (such as the number of convolution layers, pooled layers, convolution core size, number of convolution cores, etc.) and its performance is explored through a large number of experiments. The optimal CNN model structure is determined, and the relevant parameters are shown in Appendix table 3.
Appendix table 3 Optimal CNN Model Structure
	Layer (type)
	Output Shape
	Parameters

	conv1d_1(Conv1D)
	(None,6,8)
	32

	max_pooling1d_1(MaxPooling1D)
	(None,3,8)
	0

	conv1d_2(Conv1D)
	(None,3,16)
	400

	max_pooling1d_2(MaxPooling1D)
	(None,1,16)
	0

	flatten_1(Flatten)
	(None,16)
	0

	dense_1(Dense)
	(None,15)
	255

	dropout_1(Dropout)
	(None,15)
	0

	activation_1(Activation)
	(None,15)
	0

	dense_2(Dense)
	(None,1)
	16

image1.emf
i=0

Random sampling from real data

distribution and Gaussian noise distribution

Initialize penalty coefficient, differential

coefficient, batch size m, Adam optimizer

parameters, random number e,

discriminator update n times generator

update once

Initialize the network parameters of

the generator and discriminator

Add dynamic random noise.

The noise generates sample data through

the generator and puts the real data into

the discriminator along with the

generated data

Calculate discriminator loss

according to formula (7)

i>m

i+1

Yes No End

Update the network

parameters of the

discriminator

t=0

t>n

Update the network

parameters of the

generator

Whether θ

converges

t+1

Yes

No

Start

Microsoft_Visio_Drawing.vsdx
i=0
Random sampling from real data distribution and Gaussian noise distribution
Initialize penalty coefficient, differential coefficient, batch size m, Adam optimizer parameters, random number e, discriminator update n times generator update once
Initialize the network parameters of the generator and discriminator
Add dynamic random noise.
The noise generates sample data through the generator and puts the real data into the discriminator along with the generated data
Calculate discriminator loss according to formula (7)
i>m
i+1
Yes
No
End
Update the network parameters of the discriminator
t=0
t>n
Update the network parameters of the generator
Whether θ converges
t+1

Yes
No
Start

image2.emf
Start

Initializes the IWOA-CNN

parameters

Initial population

generation using Logistic

chaotic map, and set t = 1.

Use MSE as the fitness value, and

calculate the individual fitness of the

population

Generates a random number p

between [0,1]

Update

individual

position

according

to formula

(11)

Update parameter A,D,C and weight

w

Output The

optimal

solution

No

No

t<max

p<0.5

|A|<1

Yes

Update

individual

position

according

to formula

(12)

Update

individual

position

according

to formula

(13)

Yes

No

Yes

Determine the CNN

network structure

Initialize CNN network

weight

Input data

Determine the optimal

structure of CNN

CNN forward

calculation

Calculate the

network error

MSE

MSE>err_goal

Use the Adam optimizer to

correct the weights and

threshold parameters.

iteration times>max_epoch

End of network

training

Model

prediction

No

No

End

Microsoft_Visio_Drawing1.vsdx
Start
Initializes the IWOA-CNN parameters
Initial population generation using Logistic chaotic map, and set t = 1.
Use MSE as the fitness value, and calculate the individual fitness of the population
Generates a random number p between [0,1]
Update individual position according to formula (11)
Update parameter A,D,C and weight w
Output The optimal solution
No
No
t<max
p<0.5
|A|<1
Yes
Update individual position according to formula (12)
Update individual position according to formula (13)
Yes
No
Yes
Determine the CNN network structure
Initialize CNN network weight
Input data
Determine the optimal structure of CNN
CNN forward calculation
Calculate the network error MSE
MSE>err_goal
Use the Adam optimizer to correct the weights and threshold parameters.
iteration times>max_epoch
End of network training
Model prediction
No
No
End

