
Supplementary text 1: Machine learning and deep learning algorithms 

1. Support vector machine (SVM) 

SVM is defined as a classifier that can be linear or nonlinear and is an example of supervised 

learning that always focuses on minimizing structural risks. There are many parameters in SVM, 

for example, the regularization parameter. The strength of the regularization is inversely 

proportional to C, which must be strictly positive. In particular, SVM aims to reduce the number of 

points with incorrect classification as much as possible, instead of having to classify all points 

correctly. Thus, noisy data may exist. To a large extent, this method will not make the model too 

complex and will not cause overfitting. The classification effect is satisfactory for researchers. 

Input: training set T={(x1, y1), (x2, y2),…, (xN, yN)}, xi ∈Rn, yi∈{+1, -1},i=1,2,…,N 

Output: Separating hyperplane and classification decision function. 

(1) The convex quadratic programming problem is constructed and solved by selecting a penalty 

parameter C > 0: 
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0 ≤ 𝛼𝛼𝑖𝑖 ≤ C, 𝑖𝑖 = 1,2, … , N  

to obtain the optimal solution a* = (a*1, a*2,…, a*N)T 

(2) Calculate: 
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(3) Separation hyperplane: 

w*∙ x + b* = 0   

(4) Classification functions: 

f(x) = sign (w*∙ x + b*) 

The hyperplane x = w0 + w1a1 + w2a2 can be written as:   
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2. K-nearest neighbor (KNN) 

KNN is a classical, simple, and highly robust classification algorithm. KNN can compare the 

similarity between testing and training data. The KNN algorithm has some advantages compared to 

other algorithms and is superior to SVM for multiple classification events. 

Input: training set T = (x1, y1), (x2, y2),…, (xN, yN)  

Manhattan distance: 
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3. Logistic regression (LR) 

LR is a machine learning algorithm that analyzes the relationship between predictors. It is 

commonly used to solve the problem of classification and prediction. For example, LR can 

distinguish between positive and negative emotions. The algorithm is also used to minimize the 

error between the result of classification and the value of the label after training for the sample with 

the result. LR can also construct a separating hyperplane between two datasets. LR is a widely used 

classifier and is particularly suitable for disease prediction. 

LR can be calculated using:  
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where, y is an integer index, and weights are encoded into a vector with length K. The features x 

are re-defined as the result of evaluating the feature functions fk(y,x) such that there is no difference 

between the features given by fk(y=i,x) and fk(y=j,x). This form is widely used for the last layer in 

neural network models and is referred to as the softmax function. 

4. Random forest (RF) 

RF was proposed by Breiman. It is a prediction made by synthesizing the prediction results of 

multiple trees. RF consists of a large number of decision trees (DTs) that choose their splitting 

features. The trees are built using the classification and regression tree methodology without pruning. 

Prediction is determined by the majority voting of ensemble predictions. The many important 



parameters include the number of trees in the forest (n_estimators) and the function to measure the 

quality of a split (criterion). The “criterion” are “gini” for the Gini impurity, “entropy” for the 

information gain, maximum depth of the tree (max_depth), minimum number of samples required 

to split an internal node (min_samples_split), and minimum number of samples required to be at a 

leaf node (min_samples_leaf). 

5. Naïve Bayes (NB) 

The NB algorithm is a classification algorithm based on Bayes’ rule. This algorithm is 

particularly suitable when the dimensionality of the inputs is high. NB is mainly performed through 

manual data preprocessing to create a dataset that can be used for classifier training and to finally 

complete the classifier with a specific category classification function. 

（1） Classification learning: the probability of the class given an instance 

Evidence E = instance’s non-class attribute values 

Event H = class value of instance 

In a naïve assumption, evidence splits into parts (i.e., attributes) that are conditionally 

independent. This means that given n attributes, Bayes’ rule can be written using a product 

of per-attribute probabilities: 

P(H|E) = P(E1|H)P(E3|H)…P(En|H)P(H)/ P(E)   

6. DT 

DT is a type of classification and prediction model that contains several improvements, 

especially for software implementation. The classification process involves intuitively using 

probability analysis and searching from top to bottom along a branch down to the leaf node. The 

label of the leaf node is the final classification category. The DT algorithm controls randomness of 

the estimator (random_state), which has to be fixed to an integer to obtain a deterministic behavior 

during fitting. A node will be split if this split induces a decrease in the impurity greater than or 

equal to this value (min_impurity_decrease), which is the threshold for early stoppage of tree growth. 

A node will split if its impurity is above the threshold. Otherwise, it is a leaf (min_impurity_split). 

The parameter (criterion) is used to determine the calculation method of impurity: 

(1) criterion='gini' 
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(2) criterion='Entropy' 
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where, T represents a given node, I represents any classification of tags, and P(i|t) represents the 

proportion of label classification I in node t. 

7. Gradient boosting trees (GBT) 

The GBT iterative DT algorithm can establish a prediction model in the form of an ensemble 

of weak prediction models. The algorithm has also been used to analyze and classify data. The 

algorithm also involves several parameters. For example, the number of boosting stages to perform 

(n_estimators) is a function that measures the quality of a split (criterion). The “criterion” is 

“friedman_mse” for the mean squared error with improvement score by Friedman, “mse” for mean 

squared error, and “mae” for the mean absolute error, minimum number of samples required to split 

an internal node (min_samples_split), and minimum number of samples required to be at a leaf node 

(min_samples_leaf). A node will be split if this split induces a decrease of the impurity greater than 

or equal to this value (min_impurity_decrease). 

8. Stochastic Gradient Descent (SGD) 

Machine learning algorithms sometime require a loss function for the original model. The loss 

function is optimized using an optimization algorithm to identify the optimal parameters and 

minimize the value of the loss function. SGD is an iterative method to optimize an objective function 

with suitable smoothness properties. It can be regarded as a stochastic approximation of gradient 

descent optimization. This reduces the computational burden, especially in high-dimensional 

optimization problems, achieving faster iterations with a trade-off of a lower convergence rate. 

Gradient descent: 

(1) Given a conditional probability model p(y|x; 𝛉𝛉)  

(2) Parameter vector data 𝒚𝒚�𝒊𝒊,𝒙𝒙�𝒊𝒊, 𝒊𝒊 = 𝟏𝟏…𝑵𝑵  

(3) Prior on parameters, p(𝛉𝛉;  𝝀𝝀) with hyper-parameter 𝝀𝝀  



(4) Gradient descent with learning rate η can be written as:   
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θ ← θ − ηg   
For convex models, the change in the loss or the parameters is often monitored, and the 

algorithm is terminated when it stabilizes. 

9. XGBoost (XGB) 

XGB is a scalable tree boosting algorithm and an efficient implementation of the gradient 

boosting algorithm. The basic learners in XGB can be either cart or linear. According to the 

parameters of XGB, when a node is split, it will be split only if the value of the loss function 

decreases after splitting. Gamma specifies the minimum loss function descent required for node 

splitting. The larger the value of this parameter, the more conservative is the algorithm. In general, 

the operation speed and algorithm accuracy of XGB are better than those of GBT. 

10. Artificial neural network (ANN) 

Multi-layer perceptron (MLP) is also an ANN. In addition to the input and output layers, 

multiple hidden layers can exist. The simplest MLP contains only one hidden layer, which is a three-

layer structure. An ANN model is a mathematical model or calculation model that imitates the 

structure and function of a network. The ANN classification algorithm belongs to the supervised 

machine learning algorithm. ANN is characterized by a pattern of connections between the neuron 

architecture and determination of the weights of the connections training or learning algorithm. 

ANN has been widely used to analyze and classify data. 

11. Convolutional neural network 

Convolutional neural network (CNN) is a kind of feedforward neural networks with 

convolution computation and depth structure. It automatically and adaptively learns spatial 

hierarchies of features through backpropagation using convolution, pooling, and fully connected 

layers. In recent years, CNN has also made contributions to image classification and object detection. 

Many researchers in different fields have utilized CNNs for analysis. In the present study, we used 

a CNN to classify and predict the various types of sleep conditions (Supplementary Figure 1). 

12. Long short-term memory 

Long short-term memory (LSTM) is a kind of time recurrent neural network specially designed 



to solve the long-term dependence problem of general recurrent neural network (RNN). RNNs have 

a chain form of repetitive neural network modules. In standard RNN, this repeated architecture 

module has only a very simple structure, such as a tanh layer. In recent years, LSTM has also been 

used widely in different fields such as text classification and image classification and time series 

information. In the present study, we also used LSTM to classify the different types of sleep 

conditions (Supplementary Figure 2). 

13. Gated recurrent units 

Gated recurrent units (GRUs) are a simpler and more effective variant of LSTM networks, and 

as such, are very popular. Since GRUs are a variant of LSTM, they can also solve the long 

dependence problem in RNNs. GRU have also been used widely for classification. In the present 

study, we also used a GRU to classify various sleep and awake conditions (Supplementary Figure 

3). 

  



SUPPLEMENTARY TABLE 1 Descriptions and functions of HRV 

Features Description Function 

CVRR Coefficient of variance of RR intervals This feature represents autonomic nervous 

function 

SDNN The standard deviation of the time interval 

between successive normal heart beats 

This feature represents all the cyclic 

components responsible for variability in the 

period of recording, therefore it represents 

total variability 

RMSSD The square root of the mean of the sum of the 

squares of differences between adjacent RR 

intervals. Reflects high frequency (fast or 

parasympathetic) influences on HRV 

This feature represents vagal tone 

NN50 Number of interval differences of successive 

RR intervals greater than 50ms 

This feature represents vagal tone 

pNN50 The proportion dividing NN50 (The number of 

interval differences of successive RR intervals 

greater than 50ms) by the total number of RR 

intervals 

This feature represents vagal tone 

LF Low frequency from 0.04 to 0.15 Hz This feature represents the activity of 

sympathetic and parasympathetic nerves. 

HF High frequency from 0.15 to 0.4 Hz This value represents the activity of the 

parasympathetic (vagus) nerve 

LF/HF The ratio of LF to HF This value represents the overall balance of 

the sympathetic and parasympathetic nerves 

The table provides a description of all HRV indicators. Among these, pNN50, RMSSD, NN50, 

SDNN, CVRR, HF, LF and LF/(LF+HF) made major contribution to predict the four types of sleep-

wake conditions (wake condition before sleep, shallow sleep, deep sleep and wake condition after 

sleep).  



SUPPLEMENTARY TABLE 2 Optimal parameters 

Machine learning algorithm name Methods Parameters 

SVM 

Hyper-parameter search 

C, gamma 

KNN n_neighbors, p 

LR 
penalty, class_weight, C, 

intercept_scaling 

SGD alpha 

GBT 

n_estimators, max_depth, 

max_features, 

min_samples_split, 

min_samples_leaf, 

subsample, criterion, 

learning_rate 

XGB 

n_estimators, max_depth, 

learning_rate, subsample, 

colsample_bytree, 

min_child_weight, gamma 

DT 

max_depth, max_features, 

min_samples_split, 

min_samples_leaf, splitter, 

criterion  

RF 

n_estimators, max_depth, 

max_features, 

min_samples_split, 

min_samples_leaf, bootstrap, 

criterion 

ANN 

hidden_layer_sizes, solver, 

max_iter, verbose, activation, 

learning_rate, alpha 



DL 

Input_size, hidden_size, 

batch_size, num_epochs, 

learning_rate 

The table summarizes the optimal parameters in current study.  

The algorithms, including support vector machine (SVM), k-nearest neighbor (k-NN), stochastic 

gradient descent (SGD), logistic regression (LR), decision tree (DT), random forest(RF), gradient 

boosting trees (GBT), extreme gradient boosting (XGBoost), artificial neural network (ANN) and 

deep learning algorithms (DL). 



SUPPLEMENTARY TABLE 3 Model evaluation indices of 13 machine and deep learning algorithms to predict the three sleep-wake conditions (wake, shallow sleep, 

and deep sleep) 

Items SVM k-NN SGD LR DT NB RF GBT XGBoost ANN CNN LSTM GRU 

Accuracy 0.75 0.79 0.81 0.81 0.81 0.42 0.81 0.81 0.81 0.81 0.81 0.81 0.82 

Precision 0.72 0.76 0.68 0.75 0.77 0.62 0.78 0.76 0.78 0.78 0.76 0.76 0.76 

Sensitivity 0.75 0.79 0.81 0.81 0.81 0.42 0.81 0.80 0.81 0.80 0.80 0.81 0.80 

F1 score 0.71 0.76 0.74 0.74 0.76 0.44 0.77 0.78 0.77 0.76 0.71 0.72 0.78 

AUC 0.79 0.86 0.86 0.87 0.86 0.58 0.87 0.87 0.88 0.86 0.85 0.85 0.87 

The table summarizes accuracies, precisions, sensitivities, F1 scores, and areas under the curve (AUC) of the thirteen machine and deep learning predictions of the 

three sleep-wake conditions (wake, shallow sleep, and deep sleep). In these analyses, wake conditions before and after sleep were uniformly integrated into wake 

conditions.  

Ten machine learning algorithms, including support vector machine (SVM), k-nearest neighbor (k-NN), stochastic gradient descent (SGD), logistic regression (LR), 

decision tree (DT), naïve Bayes (NB), random forest (RF), gradient boosting trees (GBT), extreme gradient boosting (XGBoost), artificial neural network (ANN) and 

three deep learning algorithms including, Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) were tested. 

  



SUPPLEMENTARY TABLE 4 Model evaluation indices of 13 machine and deep learning algorithms to predict four sleep–wake and differentiated wake conditions 

of before and after sleep (wake condition before sleep, wake condition after sleep, shallow sleep, and deep sleep) 

Items SVM k-NN SGD LR DT NB RF GBT XGBoost ANN CNN LSTM GRU 

Accuracy 0.66 0.68 0.70 0.70 0.66 0.38 0.72 0.72 0.71 0.70 0.70 0.72 0.78 

Precision 0.63 0.63 0.68 0.63 0.61 0.41 0.68 0.67 0.67 0.65 0.66 0.71 0.76 

Sensitivity 0.66 0.68 0.70 0.70 0.65 0.38 0.72 0.72 0.71 0.70 0.70 0.72 0.78 

F1 score 0.62 0.64 0.58 0.58 0.62 0.36 0.65 0.66 0.65 0.58 0.65 0.71 0.75 

AUC 0.72 0.76 0.71 0.73 0.71 0.62 0.76 0.76 0.76 0.73 0.75 0.76 0.86 

The table summarizes accuracies, precisions, sensitivities, F1 scores, areas under the curve (AUC) and AUC with 95% confidence intervals (CI) of the thirteen 

machine and deep learning predictions of the four sleep–wake and differentiated wake conditions of before and after sleep (wake, shallow sleep, and deep sleep). In 

these analyses, wake conditions before and after sleep were uniformly integrated into wake conditions.  

Ten machine learning algorithms, including support vector machine (SVM), k-nearest neighbor (k-NN), stochastic gradient descent (SGD), logistic regression (LR), 

decision tree (DT), naïve Bayes (NB), random forest (RF), gradient boosting trees (GBT), extreme gradient boosting (XGBoost), artificial neural network (ANN) and 

three deep learning algorithms including, Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) were tested. 



 

SUPPLEMENTARY TABLE 5 Test datasets for each model evaluation index (WEKA random 

forest in three types of conditions) 

Items deep shallow awake (before and after) Weighted Avg. 

TP Rate 0.188 0.713 0.906 0.698 

FP Rate 0.074 0.248 0.157 0.177 

Precision 0.367 0.645 0.812 0.665 

Recall 0.188 0.713 0.906 0.698 

F-Measure 0.249 0.678 0.856 0.674 

ROC Area 0.718 0.813 0.947 0.853 

The table indicate that the True Positive (TP) rate, False Positive (FP), prediction, Recall 

(sensitivity), F-Measure (F-score) and receiver operating characteristic curve (ROC) Area of the 

random forest prediction model (AUC 0.853). 

The results show that the random forest is an appropriate method to predict three types of sleep 

conditions. HRV indicators were extracted by wearable device. 

  



 

SUPPLEMENTARY TABLE 6 Test datasets for each model evaluation index (wake condition 

before sleep, shallow sleep, deep sleep, and wake condition after sleep) 

Items SVM k-NN SGD LR DT NB RF GBT XGBoost ANN 

Accuracy 0.67 0.60 0.56 0.60 0.69 0.56 0.70 0.68 0.70 0.60 

Precision 0.62 0.56 0.57 0.51 0.65 0.50 0.65 0.64 0.64 0.60 

Sensitivity 0.57 0.59 0.55 0.52 0.69 0.53 0.68 0.66 0.67 0.61 

F1 score 0.59 0.57 0.56 0.55 0.70 0.51 0.65 0.67 0.63 0.63 

AUC 0.61 0.70 0.65 0.64 0.72 0.59 0.80 0.78 0.79 0.70 

The data indicate that the prediction accuracies, precisions, sensitivities, F1 scores and areas under 

the curve (AUC) of the models and that the prediction accuracy of eight methods were >0.75, which 

included random forest (AUC 0.80), gradient boosting trees (AUC 0.78) and Extreme Gradient 

Boosting (AUC 0.79). Heart rate variability (HRV) indicators were extracted by us.  

The algorithms, including support vector machine (SVM), k-nearest neighbor (k-NN), stochastic 

gradient descent (SGD), logistic regression (LR), decision tree (DT), naïve Bayes (NB), random 

forest(RF), gradient boosting trees (GBT), extreme gradient boosting (XGBoost) and artificial 

neural network (ANN) 



 

SUPPLEMENTARY TABLE 7 Optimal parameters for three types of sleep-wake conditions 

(wake, shallow sleep, and deep sleep) 

Algorithm name Important parameters (three types of sleep and awake conditions) 

SVM C=1.0, gamma=0.1, penalty =’l2’, kernel='rbf' 

k-NN n_neighbors=13, weights='uniform', leaf_size=30, 

LR penalty='l2', C = 1.6, 'class_weight': 'balanced' 

NB alpha=1.0, var_smoothing=1e-09 

SGD penalty='l2', alpha=0.1, max_iter=1000, 

GBT n_estimators=100, criterion='mse', min_samples_leaf=80, 

min_samples_split=4, max_depth= 11, learning_rate=0.3, 

validation_fraction=0.1 

XGBoost learning_rate =0.6, n_estimators=96, max_depth = 4, 

reg_alpha=0.005, num_class=3 

DT min_samples_leaf=7, min_samples_split=8, criterion='entropy', 

splitter='best', 

RF n_estimators=200, min_samples_leaf=8, criterion=' entropy', 

min_samples_split=7, max_features=8, bootstrap=True 

ANN hidden_layer_sizes=(200,), activation='tanh', alpha=0.001, 

learning_rate='constant', max_iter = 100, solver = 'adam' 

CNN learning rate = 0.01, input_size = 9, num_layers = 1, hidden_size = 

256, batch_size = 128, class_no = 3 

LSTM star_epoch = 1, learning rate = 0.01, input_size = 9, num_layers = 1, 

hidden_size = 256, batch_size = 128, class_no = 3 

GRU patience = 24, Class_No = 3, batch_size = 64, learning rate = 0.001, 

hidden_size = 108, num_layers = 1, input_size = 9, head = 12 

The table summarizes optimal parameters about the prediction of three types of sleep-wake 

conditions (awake, shallow sleep, and deep sleep) 

The algorithms, including support vector machine (SVM), k-nearest neighbor (k-NN), stochastic 

gradient descent (SGD), logistic regression (LR), decision tree (DT), naïve Bayes (NB), random 



 

forest(RF), gradient boosting trees (GBT), extreme gradient boosting (XGBoost), artificial neural 

network (ANN), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and 

Gated Recurrent Unit (GRU) 

 

  



 

SUPPLEMENTARY TABLE 8 optimal parameters for four sleep-wake conditions and 

differentiating awake conditions before and after sleep (wake condition before sleep, wake condition 

after sleep, shallow sleep, and deep sleep) 

Machine learning algorithm name Important parameters (four sleep–wake and differentiated wake 

conditions of before and after sleep) 

SVM C=10, gamma=0.1, penalty =’l2’, kernel='rbf' 

k-NN n_neighbors=11, weights='uniform', leaf_size=30, 

LR penalty='l2', C = 2, 'class_weight': None 

NB alpha=1.0, var_smoothing=1e-09 

SGD penalty='l2', alpha=10, max_iter=1000, 

GBT n_estimators=10, min_samples_split=4, criterion='mse', max_depth= 

11, learning_rate=0.3, min_samples_leaf=80, validation_fraction=0.1 

XGBoost learning_rate =0.01, n_estimators=160, max_depth=7, 

min_child_weight=7, reg_alpha=0.005, num_class=4 

DT min_samples_leaf=3, min_samples_split=15, max_depth= 10, 

criterion=' entropy', splitter=' random', 

RF n_estimators=300, min_samples_leaf=8, min_samples_split=15, 

criterion='entropy', max_features=9, bootstrap=True 

ANN hidden_layer_sizes=(200,), activation='tanh', alpha=0.1, 

learning_rate='adaptive', max_iter = 200, solver = 'sgd' 

CNN star_epoch = 1, learning rate = 0.01, input_size = 9, num_layers = 1, 

hidden_size = 256, batch_size = 128, class_no = 4, num_epochs = 50 

LSTM star_epoch = 1, learning rate = 0.001, input_size = 9, num_layers = 1, 

hidden_size = 256, batch_size = 128, class_no = 4, num_epochs = 50 

GRU patience = 48, Class_No = 4, batch_size = 64, learning rate = 0.01, 

hidden_size = 108, num_layers = 2, input_size = 9, head = 24, 

num_epochs = 50 

The table summarizes optimal parameters about the prediction of four sleep–wake and differentiated 

wake conditions of before and after sleep (wake condition before sleep, wake condition after sleep, 



 

shallow sleep, and deep sleep) 

The algorithms, including support vector machine (SVM), k-nearest neighbor (k-NN), stochastic 

gradient descent (SGD), logistic regression (LR), decision tree (DT), naïve Bayes (NB), random 

forest(RF), gradient boosting trees (GBT), extreme gradient boosting (XGBoost), artificial neural 

network (ANN), Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM),  

and Gated Recurrent Unit (GRU). 

  



 

SUPPLEMENTARY TABLE 9 Model evaluation indices of the 13 machine and deep learning 

algorithms to predict the three sleep-wake conditions (wake, shallow sleep, and deep sleep) 

Items SVM k-NN SGD LR DT NB RF GBT XGBoost ANN CNN LSTM GRU 

Accuracy 0.79 0.79 0.78 0.78 0.80 0.46 0.81 0.81 0.80 0.80 0.80 0.81 0.81 

Precision 0.72 0.76 0.75 0.77 0.76 0.62 0.78 0.79 0.78 0.77 0.76 0.76 0.75 

Sensitivity 0.79 0.78 0.76 0.78 0.80 0.46 0.80 0.80 0.80 0.79 0.80 0.80 0.81 

F1 score 0.72 0.75 0.75 0.77 0.77 0.43 0.75 0.76 0.77 0.78 0.71 0.72 0.73 

AUC 0.79 0.85 0.86 0.87 0.86 0.59 0.87 0.87 0.87 0.86 0.85 0.86 0.86 

 

The table summarizes accuracies, precisions, sensitivities, F1 scores, and areas under the curve 

(AUC) of the thirteen machine and deep learning predictions of the three sleep-wake conditions 

(wake, shallow sleep, and deep sleep). In these analyses, wake conditions before and after sleep 

were uniformly integrated into wake conditions.  

Ten machine learning algorithms, including support vector machine (SVM), k-nearest neighbor 

(k-NN), stochastic gradient descent (SGD), logistic regression (LR), decision tree (DT), naïve 

Bayes (NB), random forest (RF), gradient boosting trees (GBT), extreme gradient boosting 

(XGBoost), artificial neural network (ANN) and three deep learning algorithms including, 

Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent 

Unit (GRU) were tested.  



 

SUPPLEMENTARY TABLE 10 Model evaluation indices of the 13 machine and deep learning 

algorithms to predict the four sleep–wake and differentiated wake conditions of before and after 

sleep (wake condition before sleep, wake condition after sleep, shallow sleep, and deep sleep) 

Items SVM k-NN SGD LR DT NB RF GBT XGBoost ANN CNN LSTM GRU 

Accuracy 0.65 0.66 0.67 0.65 0.67 0.41 0.71 0.71 0.70 0.68 0.72 0.73 0.78 

Precision 0.62 0.67 0.65 0.56 0.62 0.38 0.66 0.65 0.63 0.66 0.69 0.72 0.76 

Sensitivity 0.65 0.65 0.65 0.66 0.65 0.41 0.71 0.70 0.70 0.67 0.71 0.72 0.77 

F1 score 0.63 0.62 0.66 0.58 0.61 0.39 0.65 0.65 0.64 0.62 0.70 0.71 0.76 

AUC 0.72 0.73 0.68 0.72 0.70 0.58 0.75 0.74 0.73 0.71 0.74 0.78 0.85 

 

The table summarizes accuracies, precisions, sensitivities, F1 scores, and areas under the curve 

(AUC) of the thirteen machine and deep learning predictions of the four sleep–wake and 

differentiated wake conditions of before and after sleep (wake condition before sleep, wake 

condition after sleep, shallow sleep, and deep sleep). 

Ten machine learning algorithms, including support vector machine (SVM), k-nearest neighbor (k-

NN), stochastic gradient descent (SGD), logistic regression (LR), decision tree (DT), naïve Bayes 

(NB), random forest (RF), gradient boosting trees (GBT), extreme gradient boosting (XGBoost) and 

artificial neural network (ANN), and three deep learning algorithms including Convolutional Neural 

Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) were 

tested.  



 

SUPPLEMENTARY FIGURE LEGENDS 

 

FIGURE S1 Convolutional neural network (CNN) architecture 

 

FIGURE S2 Long short-term memory (LSTM) architecture 

 

FIGURE S3 Gated recurrent unit (GRU) architecture 

 

FIGURE S4 Differences in the heart rate variability indicators during 23-32 weeks of pregnancy 

 

FIGURE S5 Learning curve for random forest 

 

FIGURE S6 AUC of GRU (the best method) 

 

FIGURE S7 Accuracy and loss of GRU 

 

FIGURE S8 The comparison of all algorithms for predicting the four sleep-wake and 

differentiated wake conditions of before and after sleep 

The figure summarizes accuracies, precisions, sensitivities, F1 scores, and areas under the curve 

(AUC) of the thirteen machine and deep learning predictions of the four sleep–wake condition and 

differentiating wake conditions before and after sleep (wake condition before sleep, wake 

condition after sleep, shallow sleep, and deep sleep). 

Ten machine learning algorithms, including support vector machine (SVM), k-nearest neighbor 

(k-NN), stochastic gradient descent (SGD), logistic regression (LR), decision tree (DT), naïve 

Bayes (NB), random forest (RF), gradient boosting trees (GBT), extreme gradient boosting 

(XGBoost) and artificial neural network (ANN), and three deep learning algorithms including 

Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent 

Unit (GRU) were tested. 

 

FIGURE S9 Learning curves for random forest and XGBoost 



 

 

FIGURE S10 AUC of GRU (the best method) 

 

FIGURE S11 Confusion matrix for multi-classification (the best method in predicting the three 

sleep-wake conditions) 

 

FIGURE S12 Confusion matrix for multi-classification (the best method in predicting the four 

sleep-wake and differentiated wake conditions of before and after sleep) 

 


