

Supplementary Material to: Bayesian Hierarchical Models and Prior Elicitation for Fitting Psychometric Functions

1 SUPPLEMENTARY TABLES

	Estimate	SE	z-value	p-value
α (intercept)	-2.02	0.14	-14.38	< 0.001
β (speed)	0.24	0.016	14.82	< 0.001
$\alpha_{vibr=32}$ (32 Hz)	0.38	0.09	4.00	< 0.001
$\beta_{vibr=32}$ (speed: 32 Hz)	-0.04	0.01	-4.10	< 0.001

Table S1. Fixed-effect parameters of GLMM for control experiment with fine-textured surface. From (Dallmann et al., 2015). The model is described in 3.1. The estimates of intercept and slope with masking vibrations at 32 Hz are equal to $\alpha + \alpha_{vibr=32}$ and to $\beta + \beta_{vibr=32}$, respectively.

	Masking 32 Hz	Estimate	95% CI	Width CI
PSE	No	8.57	(8.31, 8.82)	0.51
PSE	Yes	8.42	(8.12, 8.71)	0.59

Table S2. PSE from GLMM for control experiment with fine-textured surface. From (Dallmann et al., 2015). The model is described in 3.1

	Estimate	95% Credible Intervals	Width Cr Int
a^0 (intercept)	-1.97	(-2.11, -1.84)	0.27
b^0 (speed)	0.23	(0.21, 0.25)	0.04
a^1 (intercept 32 Hz)	-1.59	(-1.72, -1.4)	0.32
b^1 (speed 32 Hz)	0.19	(0.17, 0.21)	0.04

Table S3. Bayesian Posterior Estimates of parameters of the probit model as defined in Eq. (9)-(18), with corresponding 95% credible intervals. Experiment in 3.1

	Masking 32 Hz	Estimate	95% Credible Intervals	Width Cr Int
PSE	No	8.56	(8.33, 8.82)	0.49
PSE	Yes	8.41	(8.13, 8.68)	0.55

 Table S4.
 Bayesian Posterior Estimates of PSE with 95% Credible Intervals, as defined Eq. (19)-(28). Experiment in 3.1

Parameter	Group	Masking	Estimate	SE	z-value	p-value
α^0 (intercept)	Control	No	-2.71	0.191	-14.13	< 0.001
α_2^0	Mild	No	0.262	0.258	1.02	0.31
$\alpha_3^{\overline{0}}$	Moderate	No	0.845	0.248	3.401	< 0.001
β^0 (slope)	Control	No	0.769	0.057	13.561	< 0.01
β_2^0	Mild	No	-0.108	0.077	-1.4	0.161
$\beta_3^{\overline{0}}$	Moderate	No	-0.269	0.075	-3.61	< 0.01
α^1 (intercept)	Control	Yes	-1.99	0.149	-13.34	< 0.001
α_2^1	Mild	Yes	0.245	0.206	1.190	0.234
$\alpha_3^{\overline{1}}$	Masking	Yes	0.505	0.203	2.493	0.013
β^{1} (slope)	Control	Yes	0.520	0.0421	12.36	< 0.001
β_2^1	Mild	Yes	-0.063	0.058	-1.072	0.29
$\beta_3^{\overline{1}}$	Moderate	Yes	-0.15	0.0581	-2.59	0.01

 rade rate
 <math>rade rate
 rade rate
 rad rate
 rade rate

Parameter	Group	Masking	Estimate	Inferior	Superior
intercept	Controls	0	-2.64	-2.84	-2.50
intercept	Mild	0	-2.36	-2.65	-2.13
intercept	Moderate	0	-1.81	-2.11	-1.58
intercept	Controls	1	-1.99	-2.23	-1.82
intercept	Mild	1	-1.71	-1.98	-1.48
intercept	Moderate	1	-1.50	-1.78	-1.25
slope	Controls	0	0.75	0.70	0.80
slope	Mild	0	0.64	0.56	0.72
slope	Moderate	0	0.48	0.42	0.56
slope	Controls	1	0.52	0.47	0.59
slope	Mild	1	0.45	0.38	0.53
slope	Moderate	1	0.37	0.31	0.45
pse	Controls	0	3.54	3.38	3.70
pse	Mild	0	3.71	3.54	3.88
pse	Moderate	0	3.76	3.57	3.95
pse	Controls	1	3.84	3.66	4.04
pse	Mild	1	3.81	3.59	4.04
pse	Moderate	1	4.02	3.80	4.28

Table S6.	GLMM Estimati	ion of the param	eters with 95% Bo	otstrap Confidence	e Intervals. Data-s	et in 3.2

	Posterior Estimate	95% Credible Intervals	Width Cr Int
b_{ctrl}^0	0.74	(0.65, 0.85)	0.2
b_2^{0}	0.62	(0.54, 0.72)	0.18
$b_3^{\overline{0}}$	0.49	(0.39, 0.6)	0.21
b_{ctrl}^{I}	0.5	(0.44, 0.56)	0.12
$b_2^{I^{\prime\prime\prime}}$	0.46	(0.36, 0.56)	0.2
$b_3^{\overline{1}}$	0.36	(0.30, 0.41)	0.11
PSE_{ctrl}^0	3.54	(3.41, 3.68)	0.27
PSE_2^{0}	3.7	(3.54, 3.9)	0.36
$PSE_3^{\overline{0}}$	3.7	(3.53, 3.89)	0.56
PSE_{ctrl}^{I}	3.84	(3.65, 4.02)	0.37
PSE_2^{1}	3.78	(3.59, 3.99)	0.4
$PSE_3^{\overline{1}}$	4.04	(3.8, 4.26)	0.46
			, ,

 Table S7. Bayesian posterior estimates - Data-set analyzed with the Bayesian model described in 3.2

REFERENCES

- Dallmann, C. J., Ernst, M. O., and Moscatelli, A. (2015). The role of vibration in tactile speed perception. *Journal of neurophysiology* 114, 3131–3139
- Picconi, F., Ryan, C., Russo, B., Ciotti, S., Pepe, A., Menduni, M., et al. (2022). The evaluation of tactile dysfunction in the hand in type 1 diabetes: a novel method based on haptics. *Acta Diabetologica*, 1–10