
Supplementary Material: Appendices

A Non-dimensionalization

Here we non-dimensionalize (2.2) to obtain the PDE-ODE system (2.3). Let [z] denote the unit of some variable
z. In the SI unit system, we have

[U ] = moles
m2 , [DU ] = m2

s , [κU ] = 1
s , [T ] = s , [X] = m ,

[Mj ] = moles , [κR] = 1
s , [µc] = moles , [βU,1] = m

s , [βU,2] = 1
m s .

Letting L denote the length-scale of the domain, we introduce the dimensionless variables u ≡ L2U/µc, v ≡
L2V/µc, t ≡ κRT , x ≡ X/L, µj ≡Mj/µc, and ηj ≡ Hj/µc. Then, we obtain that

κR ∂tU = DU
L2 ∆xU − κUU ,

κR ∂tV = DV
L2 ∆xV − κV V ,

⇔
∂tu = Du∆xu− σuu, x ∈ Ω\

⋃m
j=1 Ωj ,

∂tv = Dv∆xv − σvv, x ∈ Ω\
⋃m
j=1 Ωj ,

where we have defined the dimensionless effective diffusivities Du and Dv and degradation rates σu and σv by

Du ≡
DU

L2κR
, σu ≡

κU
κR

, Dv ≡
DV

L2κR
, σv ≡

κV
κR

.

Since we assume that the common radius, denoted by Lc, of the cells is much smaller than the domain length-scale
L, we introduce ε� 1 by ε = Lc/L� 1.

Next, by non-dimensionalizing the Robin boundary conditions in (2.2), we obtain

DU
L

µc
L2 ∂nxu = βU,1

µc
L2u− βU,2 µcµj ,

DV
L

µc
L2 ∂nxv = βV,1

µc
L2 v − βV,2 µcηj ,

⇔ εDu∂nxu = du1u− du2µj , x ∈ ∂Ωj ,
εDv∂nxv = dv1v − dv2ηj , x ∈ ∂Ωj ,

where we have defined du1 , du2 , dv1, and dv2 by

du1 ≡
βU,1
κRL

ε , du2 ≡
βU,2L

κR
ε , dv2 ≡

βV,1
κRL

ε , dv2 ≡
βV,2L

κR
ε .

Here, in order that there is an O(1) exchange across the cell membranes we have assumed that
βU,1

κRL
,
βU,2L
κR

,
βV,1

κRL

and
βV,2L
κR

are all O
(
ε−1
)
.

Lastly, we non-dimensionalize the intracellular reaction kinetics in (2.2) by

κRµc
d
dtµj = κRµc f(µj , ηj) +

∫
∂Ωj

(
βU,1

µcL
L2 u− βU,2µcLµj

)
dSx ,

κRµc
d
dtηj = κRµc g(µj , ηj) +

∫
∂Ωj

(
βV,1

µcL
L2 v − βV,2µcLηj

)
dSx ,

which yields the dimensionless intracellular reactions

dµj
dt

= f(µj , ηj) +
1

ε

∫
∂Ωj

(du1 u− du2 µj) dSx ,
dηj
dt

= g(µj , ηj) +
1

ε

∫
∂Ωj

(dv1 v − dv2 ηj) dSx ,

for each j ∈ {1, ...,m}. This completes the derivation of (2.3).

B Reduced-wave Green’s function for the unit disk

When Ω is the unit disk, the reduced-wave Green’s function Gω(x; ξ) and its regular part, satisfying (2.9) can be
determined analytically using separation of variables as (see equations (6.10) and (6.11) of [20])

Gω(x; ξ) =
1

2π
K0 (ω|x− ξ|)− 1

2π

∞∑
n=0

βn cos (n(ψ − ψ0))
K ′n(ω)

I ′n(ω)
In (ω|x|) In (ω|ξ|) , (B.1a)

Rω(ξ) =
1

2π
(log 2− γe − logω)− 1

2π

∞∑
n=0

βn
K ′n(ω)

I ′n(ω)
[In (ω|ξ|)]2 , (B.1b)
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where γe ≈ 0.5772 is Euler’s constant, and In(z) and Kn(z) are the modified Bessel functions of the first and
second kind of order n, respectively. In (B.1), β0 ≡ 1, βn ≡ 2 for n ≥ 1, while x ≡ |x|(cosψ, sinψ)T , and
ξ ≡ |ξ|(cosψ0, sinψ0)T .

For a ring pattern where the cell centers xk for k ∈ {1, . . . ,m}, are equidistantly spaced on a ring of radius r
concentric within the unit disk, as in (4.1), all the Green’s matrices used in the steady-state and linear stability
analysis are circulant and symmetric matrices. As a result, each such matrix spectrum is available analytically.

Following Appendix A of [50], for an m×m circulant matrix A, with possibly complex-valued matrix entries,

its complex-valued eigenvectors ṽj and eigenvalues αj are αj =
m∑
k=1

A1kω
k−1
j and ṽj =

(
1, Zj , . . . , Z

m−1
j

)T
, for

j ∈ {1, . . . ,m}. Here Zj ≡ exp
(

2πi(j−1)
m

)
and A1k, for k ∈ {1, . . . ,m}, are the elements of the first row of A.

Since A is also a symmetric matrix, we have A1,j = A1,m+2−j , for j ∈ {2, . . . , dm/2e}, where the ceiling function
dxe is defined as the smallest integer not less than x. Therefore, αj = αm+2−j , for j ∈ {2, . . . , dm/2e}, so that
there are m− 1 eigenvalues with a multiplicity of two when m is odd, and m− 2 such eigenvalues when m is even.
As a result, we conclude that 1

2 [ṽj + ṽm+2−j ] and 1
2i [ṽj − ṽm+2−j ] are two independent real-valued eigenvectors

of A, corresponding to the eigenvalues of multiplicity two. In summary, the matrix spectrum of a circulant and
symmetric matrix A, where the eigenvectors have been normalized by vTj vj = 1, is

αj =
m∑
k=1

A1k cos (θj(k − 1)) , j ∈ {1, . . . ,m} ; θj ≡
2π(j − 1)

m
; v1 =

1√
m

e , (B.2a)

vj =

√
2

m
(1, cos (θj) , . . . , cos (θj(m− 1)))T , vm+2−j =

√
2

m
(0, sin (θj) , . . . , sin (θj(m− 1)))T ,(B.2b)

for j ∈ {2, . . . , dm/2e}, where θj ≡ 2π(j − 1)/m. When m is even, there is an additional normalized eigenvector
of multiplicity one given by vm/2+1 = m−1/2(1,−1, 1, . . . ,−1)T .
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