Supplementary Material: Appendices

A Non-dimensionalization

Here we non-dimensionalize (2.2) to obtain the PDE-ODE system (2.3). Let [z] denote the unit of some variable
z. In the SI unit system, we have

U] = =k, [Dy] = =, [k] = L, 7] = s, [X] = m,
[M;] = moles, [kg] = %, [u] = moles, [Bui] = 2, [Buo = .

Letting L denote the length-scale of the domain, we introduce the dimensionless variables u = L2U/p., v =
L*V/pe, t = kgT, x = X/L, pj = M;/uc, and 1; = H; /1. Then, we obtain that

kpOU = %AXU— kuU , - O = DyAyu—ouu,  x€Q\UL, Qy,
krROV = T‘{ AV — kyV Ov = DyAxv — oy, X € Q\ U;nzl Qj ,
where we have defined the dimensionless effective diffusivities D,, and D, and degradation rates o, and o, by
Dy KU Dy Ky
D, = = — D,= —— = —.
= L2kp’ Tu KR Y7 L2kp’ v KR

Since we assume that the common radius, denoted by L., of the cells is much smaller than the domain length-scale
L, we introduce e < 1 by e = L./L < 1.
Next, by non-dimensionalizing the Robin boundary conditions in (2.2), we obtain

TU% Oncu = P gsu = Bug prepy » o fDuOnu = diu—dip;,  x €0y,
BV 9 v = ByaL5v— Byopens . eDyOn, v = dijv—djn;,  x€0Q;,
where we have defined df, dy, df, and d by
Bua _ Bua2L Pva_ BvaL
di = dy = —/—¢, dy = ds = ——e¢.
! &RL 2 KR 27 kR L 2 KR

tﬂUl Bu2L  Bva

Here, in order that there is an O(1) exchange across the cell membranes we have assumed tha s Thn 0 mRL

and 62’}? are all O (71).
Lastly, we non-dimensionalize the intracellular reaction kinetics in (2.2) by

KRte gty = Krte F(1g15) + [ao, (/BUJ% u— BuapeL uj) dSx ,
KRite Sn; = Kppe 9(pj,m;) + fan <5V,1%L v — BvapeL 77j> dSx ,

which yields the dimensionless intracellular reactions

dpj 1 u u dnj 1 v v
dtjzf(ujmj)Jr/ (df w—dy pj) dSx djzg(uj,njH/ (df v —dyn;) dSx,
€ Joq, t € Joq,

for each j € {1,...,m}. This completes the derivation of (2.3).

B Reduced-wave Green’s function for the unit disk

When Q is the unit disk, the reduced-wave Green’s function G, (x;€) and its regular part, satisfying (2.9) can be
determined analytically using separation of variables as (see equations (6.10) and (6.11) of [20])
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Iw) "

[ (@lEN)? (B.1b)

Gu(x:§) = 7Ko (wlx —£) —*ZBnCOS (¥ —%0)) 7 n (WIx[) In (w¢]) (B.1a)

K (w)
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R, (&) = By (log2—ve logw) ——Zﬂn
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where . ~ 0.5772 is Euler’s constant, and I,,(z) and K,(z) are the modified Bessel functions of the first and
second kind of order n, respectively. In (B.1), By = 1, B, = 2 for n > 1, while x = |x|(cos,siny)?, and
& = |€](cos o, sin o) "

For a ring pattern where the cell centers xj, for k € {1,...,m}, are equidistantly spaced on a ring of radius r
concentric within the unit disk, as in (4.1), all the Green’s matrices used in the steady-state and linear stability
analysis are circulant and symmetric matrices. As a result, each such matrix spectrum is available analytically.

Following Appendix A of [50], for an m x m circulant matrix A, with possibly complex-valued matrix entries,

m
its complex-valued eigenvectors v; and eigenvalues «; are aj = ) Alkwf_l and v; = (1, Ly, Z]m_l) , for
k=1

2mi(j—1)
m

je{l,...,m}. Here Z; = exp( and Ayg, for k € {1,...,m}, are the elements of the first row of A.
Since A is also a symmetric matrix, we have Ay ; = Aq m42—j, for j € {2,...,[m/2]}, where the ceiling function
[x] is defined as the smallest integer not less than z. Therefore, a;j = amo—j, for j € {2,...,[m/2]}, so that
there are m — 1 eigenvalues with a multiplicity of two when m is odd, and m — 2 such eigenvalues when m is even.
As a result, we conclude that % [Vj + Vim42—j] and % [Vj — Vim42—j] are two independent real-valued eigenvectors
of A, corresponding to the eigenvalues of multiplicity two. In summary, the matrix spectrum of a circulant and

symmetric matrix A, where the eigenvectors have been normalized by v;-ij =1, is

2m(j—1)

aj =Y Apcos(05(k—1)), jefl,....m}; =" vi=——e, (B.2a)
k=1

3~

m

vj = \/Z(l,cos (05),...,co8 (0;(m — DN, Vo= \/Z(O,sin (0;),...,sin (8;(m —1)))" (B.2b)

for j € {2,...,[m/2]}, where §; = 27(j — 1)/m. When m is even, there is an additional normalized eigenvector
of multiplicity one given by v, 5,1 = m=2(1,-1,1,...,—-1)7.
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