Supplementary Appendix

A Conventions

For a connection with torsion whose connection coefficients are $\Gamma^{\rho}_{\mu\nu}$ the Riemann tensor $R_{\mu\nu\sigma}{}^{\rho}$ and torsion tensor $T^{\rho}{}_{\mu\nu}$ are given by

$$\left[\nabla_{\mu}, \nabla_{\nu}\right] X_{\sigma} = R_{\mu\nu\sigma}{}^{\rho} X_{\rho} - T^{\rho}{}_{\mu\nu} \nabla_{\rho} X_{\sigma} , \qquad (A.1)$$

$$\left[\nabla_{\mu}, \nabla_{\nu}\right] X^{\rho} = -R_{\mu\nu\sigma}{}^{\rho} X^{\sigma} - T^{\sigma}{}_{\mu\nu} \nabla_{\sigma} X^{\rho}, \tag{A.2}$$

which implies

$$R_{\mu\nu\sigma}{}^{\rho} \equiv -\partial_{\mu}\Gamma^{\rho}_{\nu\sigma} + \partial_{\nu}\Gamma^{\rho}_{\mu\sigma} - \Gamma^{\rho}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma} + \Gamma^{\rho}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma}, \qquad (A.3)$$

$$T^{\rho}_{\ \mu\nu} \equiv 2\Gamma^{\rho}_{[\mu\nu]} \,. \tag{A.4}$$

These obey the following Bianchi identities

$$R_{[\mu\nu\sigma]}{}^{\rho} = T^{\lambda}{}_{[\mu\nu}T^{\rho}{}_{\sigma]\lambda} - \nabla_{[\mu}T^{\rho}{}_{\nu\sigma]}, \qquad (A.5)$$

$$\nabla_{[\lambda} R_{\mu\nu]\sigma}{}^{\kappa} = T^{\rho}{}_{[\lambda\mu} R_{\nu]\rho\sigma}{}^{\kappa}. \tag{A.6}$$

We define the Ricci tensor as

$$R_{\mu\nu} \equiv R_{\mu\rho\nu}{}^{\rho} \,. \tag{A.7}$$

We will assume that the connection is such that

$$\Gamma^{\rho}_{\mu\rho} = \partial_{\mu} \log M \,, \tag{A.8}$$

where M is the integration measure, so that

$$R_{\mu\nu\rho}{}^{\rho} = 0. \tag{A.9}$$

B Details for Trautman condition computation

In Section 3.4 it is left to show that $h^{\mu[\gamma}\check{R}_{\mu(\nu\sigma)}^{\rho]} = 0$. This expression can be shown to be Galilean boost invariant. We prove $h^{\mu[\gamma}\check{R}_{\mu(\nu\sigma)}^{\rho]} = 0$ by showing that all the projections with $v^{\nu}v^{\sigma}$, $v^{\nu}h^{\sigma\lambda}$ and $h^{\nu\kappa}h^{\sigma\lambda}$ give zero. We will use that

$$\check{\nabla}_{\rho}v^{\mu} = -h^{\mu\nu}K_{\rho\nu}\,,\tag{B.1}$$

where $K_{\mu\nu} = -\frac{1}{2}\mathcal{L}_v h_{\mu\nu}$ with \mathcal{L}_v the Lie derivative along v^{μ} . Using the definition of the Riemann tensor as well as (B.1) it follows that

$$v^{\nu}v^{\sigma}\check{R}_{\mu\nu\sigma}{}^{\rho} = -h^{\rho\lambda}v^{\kappa}\check{\nabla}_{\kappa}K_{\mu\lambda}. \tag{B.2}$$

Hence we find $h^{\mu[\gamma}\check{R}_{\mu(\nu\sigma)}{}^{\rho]}v^{\nu}v^{\sigma}=0$ which holds since $h^{\mu\nu}$ is covariantly constant and we also used the fact that $K_{\mu\nu}$ is symmetric. We next turn to the projection of $h^{\mu[\gamma}\check{R}_{\mu(\nu\sigma)}{}^{\rho]}=0$ with $h^{\nu\kappa}h^{\sigma\lambda}$. To this end define

$$X^{\alpha\beta\mu\nu} = h^{\alpha\rho}h^{\beta\sigma}\check{R}_{\rho\sigma\kappa}{}^{\nu}h^{\mu\kappa}. \tag{B.3}$$

The tensor $X^{\alpha\beta\mu\nu}$ is antisymmetric in its first two and last two indices¹. It also obeys $X^{[\alpha\beta\mu]\nu}=0$. Adding and subtracting $X^{[\alpha\beta\mu]\nu}=0$, $X^{[\alpha\beta\nu]\mu}=0$, $X^{[\beta\mu\nu]\alpha}=0$ and $X^{[\mu\nu\alpha]\beta}=0$ appropriately we obtain $X^{\alpha\beta\mu\nu}=X^{\mu\nu\alpha\beta}$. This can be used to show that $X^{\mu(\nu\alpha)\beta}-X^{\beta(\nu\alpha)\mu}=0$ which is equivalent to $h^{\rho[\alpha}\check{R}_{\rho(\sigma\kappa)}{}^{\nu]}h^{\beta\sigma}h^{\mu\kappa}=0$.

Finally we need to show that $h^{\rho[\alpha}\check{R}_{\rho(\sigma\kappa)}{}^{\nu]}v^{\sigma}h^{\mu\kappa}=0$. To this end define

$$Y^{\alpha\mu\nu} = h^{\rho\alpha} \check{R}_{\rho\sigma\kappa}{}^{\nu} v^{\sigma} h^{\kappa\mu} \,. \tag{B.4}$$

In terms of this new object we have

$$4h^{\rho[\alpha}\check{R}_{\rho(\sigma\kappa)}{}^{\nu]}v^{\sigma}h^{\mu\kappa} = Y^{\alpha\mu\nu} - Y^{\nu\mu\alpha} + 2h^{\rho[\alpha}\check{R}_{\rho\kappa\sigma}{}^{\nu]}v^{\sigma}h^{\mu\kappa}. \tag{B.5}$$

Using $\check{R}_{[\rho\sigma\kappa]}^{\nu}=0$ we can show that

$$Y^{\alpha\mu\nu} - Y^{\mu\alpha\nu} + h^{\rho\alpha} \check{R}_{\kappa\rho\sigma}{}^{\nu} v^{\sigma} h^{\mu\kappa} = 0.$$
 (B.6)

Cyclically permuting the indices on this last equation leads to two more equations. Adding and subtracting these off (B.6) leads to

$$2Y^{\alpha\mu\nu} = -h^{\rho\alpha}\check{R}_{\kappa\rho\sigma}{}^{\nu}v^{\sigma}h^{\mu\kappa} - h^{\rho\nu}\check{R}_{\kappa\rho\sigma}{}^{\mu}v^{\sigma}h^{\kappa\alpha} + h^{\rho\mu}\check{R}_{\kappa\rho\sigma}{}^{\alpha}v^{\sigma}h^{\kappa\nu}. \tag{B.7}$$

This tells us that

$$Y^{\alpha\mu\nu} - Y^{\nu\mu\alpha} = -h^{\rho\nu}\check{R}_{\kappa\rho\sigma}{}^{\mu}v^{\sigma}h^{\kappa\alpha}. \tag{B.8}$$

This in turn can be used to obtain

$$4h^{\rho[\alpha}\check{R}_{\rho(\sigma\kappa)}{}^{\nu]}v^{\sigma}h^{\mu\kappa} = -h^{\rho\nu}\check{R}_{\kappa\rho\sigma}{}^{\mu}v^{\sigma}h^{\kappa\alpha} + h^{\rho\alpha}\check{R}_{\rho\kappa\sigma}{}^{\nu}v^{\sigma}h^{\kappa\mu} - h^{\rho\nu}\check{R}_{\rho\kappa\sigma}{}^{\alpha}v^{\sigma}h^{\kappa\mu} \,. \tag{B.9}$$

Finally, using

$$\check{R}_{\kappa\rho\sigma}^{\mu}v^{\sigma} = h^{\mu\gamma} \left(\check{\nabla}_{\kappa} K_{\rho\gamma} - \check{\nabla}_{\rho} K_{\kappa\gamma} \right) , \qquad (B.10)$$

which follows from the definition of the Riemann tensor and (B.1), we obtain the result that

$$h^{\rho[\alpha}\check{R}_{\rho(\sigma\kappa)}{}^{\nu]}v^{\sigma}h^{\mu\kappa} = 0.$$
(B.11)

¹Antisymmetry in the last two indices follows from $[\check{\nabla}_{\rho}, \check{\nabla}_{\sigma}]h^{\mu\nu} = 0$ which leads to $\check{R}_{\rho\sigma\kappa}{}^{(\nu}h^{\mu)\kappa} = 0$.