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Supplementary Material 
1. AI and Its Impact on Scientific Research Process 

 
The AI revolution has not only proven to be transformative technology, it has also changed the 
scientific research process, which in turn has contributed to its own rapid advancement.  The main 
drivers for this rapid advancement are: i) AI is a unifying technology applicable to a wide variety of 
data types and applications. Similar to transfer learning where a model trained on natural images can 
be fine-tuned on medical images for cancer detection, there is also transfer knowledge where for 
example an advance in NLP modeling such as transformers in neural nets is soon propagated across 
other application domains such as computer vision and timeseries prediction.  This creates a fast cross-
pollination of the best ideas across different domains.  ii) The availability of end-to-end AI platforms 
such as tensorflow, that are continually updated and professionally maintained, has been a critical 
enabling technology for rapid prototyping, developing, and sharing of models.  iii)  Unlike previous 
techniques, the accuracy of deep learning models does not saturate but continues to increase with more 
data. This has led to exponential improvements in cases where there is large available data. For 
example, the larger language model GPT-3 was developed less than a year after its predecessor GPT-
2. It has two orders of magnitude more parameters (175 billion parameters) than GPT-2 (1.5 billion 
parameters) and it was trained on over 500 billion words.  Assuming a person were to speak at an 
average rate of 150 words per minute, 500 billion words would represent over 55 million hours or more 
than 6300 years of continuous speech.  This led to a significant increase in its efficacy, to the point 
where GPT-3 can write original content with equivalent fluency to that of a human (New York Times). 
ChatGPT, a human-like conversational bot, which is the based on GPT-3, is considered a tipping point 
in AI and has garnered over a million users within one week of release, the fastest technology adoption 
in history, by far. Similarly, AlphaGo went from beating the top player in Go, Lee Sedol, on March 
2016 to AlphaZero in late 2017, which taught itself from scratch how to master the games of chess, 
shogi, and Go, beating a world-champion computer program in each case.  iv) To keep pace, the 
scientific research process has improved with a more efficient feedback loop.  It is now standard 
protocol to share all components of research including data as well as code and models developed on 
common AI platforms like tensorflow. This enables others to readily verify, reproduce, deploy, and 
build upon others’ research. Further, posting of papers on arXiv allows for rapid communication and 
dissemination to the community at large. In addition, establishment of benchmarks and reporting 
results against those has provided an unbiased assessment of a given work, reducing “clutter” and 
making the important contributions stand out more clearly. 

 

2. Automated Detection of Current Sheets and Measurements of their Lengths 
 
Here, we describe the algorithm that we developed for quantifying the current sheets as observed in 
the 2D full PIC simulations of turbulence by Karimabadi et al. [2013].  Identification of current sheets 
can be thought of as a segmentation problem and one approach would be to create a large, labeled set 
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to train a segmentation network.  Note that the size of each time slice (8192 x 16384) would require 
large memory for segmentation networks.  There are several options: a) use of several TPUs or shared 
memory machines, b) down sampling of images, c) using techniques such as sliding window. 
 
Here, we used an unsupervised approach which bypasses the labor-intensive creation of a labeled set, 
and it also has low memory requirements. Given our promising results, one could use the current sheets 
identified by our unsupervised approach to create labels which the domain experts can then correct as 
needed.  Once a segmentation model is trained, one can then run it on a new set, identify and correct 
the errors and retrain.  This semi-supervised approach can make the labeling process much more 
efficient. 
 
Our unsupervised algorithm proceeds in several stages, none of which is particularly complex alone, 
but they can accomplish something non-trivial when used in tandem.  Starting with the raw image data, 
we preprocess it as follows: we square the data, apply Gaussian blur, rescale the pixel values to integers 
between 0 and 255, and finally discard all pixels except the top 3% by brightness. This step is the most 
ad hoc of the algorithm's steps and could likely be replaced with many other methods. In practice this 
step was developed empirically to make the task easier for the "object detection" algorithms later in 
the pipeline. Squaring the image pixel by pixel before applying the Gaussian blur ensures that the noise, 
we add will smooth out the boundaries of the current sheets without affecting their interior. That is, 
regions whose brightness is on the boundary between surviving and not surviving the later thresholding 
step will be smoothed, while the "backbone" of each current sheet will already be sufficiently bright 
from the squaring step that it would not be affected by the smoothing.  

 

 The next step involves application of edge detection. In this step we use the Canny edge detection 
algorithm to transform the bright regions in each backbone to a thin sheet of pixels outlining the 
perimeter of those regions. The purpose of this algorithm will become clear below since it is being 
used as a sort of preprocessing step for the clustering algorithm that follows.  In the clustering stage, 
we use DBSCAN algorithm that works by grouping points within a certain spatial radius, optionally 
with a lower bound on the minimum number of points required to be a cluster (rather than being 
assigned to the "noise" cluster, where all outliers are sent). The edge detection step above was 
performed with DBSCAN in mind. DBSCAN can only threshold based on the number of points in a 
point cloud. It has no concept of the "length" of the point clouds it builds up by connecting these points, 
except to the extent that adjacent points are no more than epsilon distance apart. 

 

Consider now the problem of detecting a long thin current sheet, while ignoring other structures like 
circular blobs whose radius may be larger than the minimum thickness of our thin current sheet.  To 
illustrate, imagine we have a circular blob with a 20-pixel radius, which we would like to ignore, and 
a current sheet 100 pixels long and 5 pixels wide, which we would like to detect.  The circular blob 
will have approximately p*r2 = 1256 white pixels in its interior, while the current sheet has only 500 
pixels. No simple threshold will allow us to count the smaller point cloud as a "cluster," while claiming 
the larger one is "noise." 
 
This was the motivation for applying edge detection. The result of edge detection is to turn each of 
these point clouds from an "area" to a "perimeter." To detect an object's edges is to discard its interior. 
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Now, after transforming these objects from areas to perimeters, our circular blob has 2pr = 125 pixels 
inside it, while our current sheet has 210.  What is important here is not the specific magnitudes, but 
the fact that the sort order has now changed. Before edge detection, the circular blob (considered as a 
point cloud) had more points than the current sheet. After edge detection, the reverse is true.   To put 
it differently, ideally what we would like to do here is something like DBSCAN with a "minimum 
length" argument, that kills off "short" clusters and preserves "long" ones. That is, we would like to 
say, "current sheets whose length is less than L will be called noise, while those longer than L will be 
signal." 

 

At this stage of our algorithm, we do not yet have any geometric notions like "length" available to us. 
All we have is sets of 0-dimensional points in space.  Since we are forced to work with point clouds, 
edge detection offers a good approximation of the geometric threshold we desire. Transforming areas 
to edges transforms our point clouds so that the attribute we care about (their length) will be easier to 
detect using standard DBSCAN with a simple threshold. 

 

At this point we have effectively performed object detection (a set of current sheets, each represented 
as a point cloud) and our objects are now spatially separated from one another by a distance no less 
than our DBSCAN threshold. We can now use off-the-shelf geometry libraries to turn our point clouds 
into polygons, and begin to measure arc lengths, convex hulls, or other geometric properties. 

 

There is a subtlety regarding the measurement of length/perimeter.  Imagine we are interested in 
measuring the length of a coastline which has fractal structure or even a simpler case of a very jagged 
contour around a circle. If we measure the length of the contour following each of the fine scale jagged 
points, the length will be much larger than if we take the radius of the circle and calculate the length 
of the perimeter from the radius 2pr (which is analogous to what Minkowski functionals do).  In case 
of turbulence, both types of measurements would be interesting. If one could do simulations at realistic 
mass ratio and high ratio of electron plasma frequency to electron cyclotron frequency, there would be 
very short scale fluctuations and it is conceivable that the current sheets would have fractal structure. 
If so, measurements of “length” accounting for the jaggedness of the current sheets could lead to large 
scales, and possibly even MHD scales. However, the physical implications of such “length” in terms 
of macroscopic properties of turbulence such as dissipation is less clear. Here, we focus on 
measurement of length while ignoring any jaggedness. A useful technique for this purpose is the 
convex hull which we used. 

 

The complete code including the code to generate the videos can be found at 
https://github.com/homakar9/NeuHPC/tree/main/turbulence. 

 

The two parameters in the algorithm are the threshold and the radius in pixels for DBSCAN.  Videos 
using different thresholds can be found at 
https://github.com/homakar9/NeuHPC/tree/main/turbulence/movies. 
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We have also included movie of the plasma mixing 
(https://github.com/homakar9/NeuHPC/tree/main/turbulence/mixing) 
which is less stochastic than the evolution of current sheets. It would be interesting to derive equations 
for the temporal evolution of mixing which is relevant to the problem of transport at the magnetopause. 

 
 

3. A New Type of Neural Net for Derivation of 1/r2 
 
 
The standard artificial neural nets were inspired by their biological counterparts, but the focus has been 
on improved results in practical applications rather than mimicking the brain’s design closely.  While 
many ANN architectures have been considered (e.g., recurrent, LSTM, CNN, FFN), most share the 
same design of artificial neurons (Figure 1). In contrast, the human nervous system contains a wide 
variety of neurons (e.g., Granule, Purkinje, Pyramidal, Renshaw, Spindle, among others) consisting of 
different types of synapses and cell body types. While some of these cell types have rough parallels in 
modern machine learning models (e.g., Spindle cells may be likened to "skip connections"), most of 
these computational units have no obvious parallel in the models we build in machine learning. 

 

It is reasonable to assume that one reason for the presence of such a wide variety of neurons in the 
brain is to maximize efficiency of computations for the wide variety of objectives that it is tasked to 
handle.  Adjusting weights is not a cost-free operation for the brain. Changing synaptic conductances 
long term requires gene expression and protein synthesis in the postsynaptic cell. Having multiple 
routes to computing the same function allows the brain to take a path of least resistance, thus disturbing 
as few previously learned associations as possible. In this sense, we can think of the brain striking a 
balance between accuracy and efficiency and it accomplishes that through the existence of a variety of 
neurons. 

 

Unlike most applications of ANN where accuracy is the main objective, the problem of symbolic 
regression introduces a second objective of parsimony which can be thought of as a proxy for 
computational efficiency.  As such, and carrying the analogy to the human nervous system, we have 
devised an ANN where the network has access to different types of neurons consisting of different 
synapses and cell body types (Fig. 1). 

 

The code and its application to the 1/r2 problem can be found here 
https://github.com/homakar9/NeuHPC/tree/main/newton. 
It would be interesting to explore the mathematical properties of such a network (e.g., stability, 
convergence, training efficiency).  Our goal here was to highlight the fact that there is significant 
flexibility in the design of neural networks, both in terms of architecture (e.g., CNN, LSTM) but also 
in its building blocks (perceptron). 

 



 5 

 
 

Supplementary Figure 1.  a) A neuron consists of dendrites, cell body, axon and synapse. Dendrites 
are responsible for receiving input from other neurons and axon is responsible for transmission from 
one to the other.   At synapse, the connecting structure between two neurons, electrical signals are 
modulated in various amounts.  The cell body processes the electrical signals, and the axon has the 
information stored in the form of an action potential.  An actual neuron fires an output signal only when 
the total strength of the input signals exceeds a certain threshold.  b) A perceptron can be thought of as 
having a synapse, a cell body and axon. Standard ANNs are based on a single type of synapse (the 
inputs and weights interact with multiplication) and cell body type (weighted inputs are aggregated 
with “reduce sum”). The activation function plays the role of an axon and can be chosen from a variety 
of functions such as ReLU, sigmoid, tanh, among others.  c) In our proposed ANN, there are different 
types of neurons, each with different types of synapses (input and weights interact with arbitrary binary 
operations) and cell body types (weighted inputs are aggregated with arbitrary reduction functions).  
 
4.   Auto-differentiation 
 
Given the importance of auto-differentiation in HPC, here we discuss it in more details. Auto-
differentiation provides an accurate and efficient calculation of derivatives which is relied on for 
training neural networks. 
 
There is no formal requirement for a neural net or its layers to be differentiable. Examples of non-
differentiable neural nets include derivative-free neural nets (e.g., Aly et al., 2019). As Aly et al. state, 
the non-differentiability can arise “where the neural network or task is non-differentiable, does not 
have a representative loss function or the derivatives are uninformative in guiding the optimizer”. It is 
also easy to see this point if one insists on using argmax which is not differentiable.  There are several 
different types of derivative-free optimization algorithms that can be used with neural networks, 
including evolutionary algorithms, Monte Carlo, and particle swarm optimization. These algorithms 
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work by iteratively searching for the optimal weights for the model through a process of trial and error, 
without the use of derivatives. 
 
There is, however, a great advantage in being able to do the optimization/training using 
backpropagation and the chain rule. Therefore, all the components of standard neural nets such as max 
pooling, activation functions, loss function, etc. are chosen to be differentiable almost everywhere.  
The term differentiable “almost everywhere” refers to the function being differentiable everywhere 
except on a set of measure zero. An example is the activation function ReLU which is continuous but 
differentiable in all its domain except at the origin x=0. Despite not being differentiable (everywhere), 
the fact that it is differentiable “almost everywhere” enables calculation of gradients using 
subderivatives in backpropagation algorithm. See for example Lee et al. (2020) where they discuss the 
correctness of auto-differentiation for non-differentiable functions. 
 
Note that it is possible to have a non-learnable layer that is not differentiable, but the learnable layers 
need to be differentiable almost everywhere to be able to take advantage of the backpropagation and 
chain rule. And this is the key.  The important point is not that the neural network is differentiable but 
that each step is and that there is a machinery in place to compute it efficiently.  In other words, the 
standard neural nets are put together to be trainable using backpropagation and the chain rule, but this 
feature is not an inherent property of neural nets in general. 
 
From a practical standpoint, the real value is in the “auto” part of auto-differentiation. The chain rule 
(and "the pieces being differentiable") were always used, before auto-differentiation, but by “hand”. 
Chain rule allowed researchers to train networks with backpropagation, but it placed the burden of 
correct implementation of tensor calculus on the software developer, a painstaking and error prone 
requirement that prevented many technically competent developers from being practically able to 
participate in deep learning. The “auto” in auto-differentiation was made possible by the advent of 
frameworks for symbolic computation using a computational graph. The knowledge of a computational 
graph is what permits symbolic, rather than numerical, differentiation. In symbolic differentiation, the 
graph would know that the derivative of sine is a cosine and uses it to evaluate the derivative. To 
highlight the symbolic nature of auto-differentiation, we have constructed a version of auto-
differentiation along with some examples in https://github.com/homakar9/NeuHPC/tree/main/newton.  
While there is a subtle difference between auto-differentiation and symbolic differentiation, it is not of 
practical relevance, and we will not discuss it here.  
 
In auto-differentiation, derivatives are calculated using a computational graph where each node in the 
graph represents an elementary operation (such as addition or multiplication) and each edge represents 
the flow of data (such as input values or intermediate results) between the nodes. To calculate a 
derivative using auto-differentiation, you start by constructing a computational graph that represents 
the function you want to differentiate. Then, you use the chain rule to calculate the derivative of the 
function by traversing the graph in a reverse direction (from the output node to the input node) and 
accumulating the products of the derivatives of the intermediate operations with the incoming edges. 
For this symbolic differentiation to be possible, one must use the functions native within a framework 
(e.g., TensorFlow) so their symbolic derivatives would also be known. For example, we cannot 
differentiate through numpy.log as TensorFlow would need to use its own version of log. 
 

In summary, while there is no requirement for neural nets to be differentiable (e.g., Aly et al., 2019), 
standard neural nets are constructed so that they can be trained using backpropagation and chain rule. 



 7 

This requires all learnable layers and components of the neural net (e.g., loss function, max pooling, 
activation functions, etc.) to be once differentiable almost everywhere.  Frameworks like TensorFlow 
and PyTorch automate this operation, enabling the “auto” in auto-differentiation, making efficient 
computation of derivatives readily accessible.   

5.   Deep Learning 
 
The common perception that a deep neural network is simply one that contains more than three hidden 
layers has led to confusion among non-experts. This definition, while not entirely inaccurate, fails to 
encompass the full scope of deep learning and its advancements. For example, to imply that a neural 
network with four hidden layers constructed twenty years ago constitutes deep learning is a misnomer. 
This misunderstanding of the true definition and capabilities of deep learning can cause confusion and 
detract from the significance of recent advancements in the field.   

The term "deep" in deep learning refers to the number of layers in a neural network, with deep learning 
networks typically comprising dozens or even hundreds of layers. However, it is essential to note that 
the number of layers alone does not define deep learning. In contrast to simple neural nets, deep 
learning models possess the capability of automatically extracting features from raw data, enabling 
them to make predictions or decisions. This ability enables the accuracy of deep learning models to not 
saturate but continue to increase with more data and makes them suitable for a wide range of tasks such 
as image classification, speech recognition, and natural language processing, among others. 

Recent advances in the architecture of neural networks, such as convolution nets, attention 
mechanisms, and transformers, along with more effective training approaches and techniques to 
improve generalization, such as dropout and regularization, have enabled the scaling of deep learning 
models to enormous sizes and trained on Big Data. For example, GPT-3, one of the largest deep 
learning models to date, has over 175 billion parameters. 

While deep learning-based models have achieved superhuman capabilities in individual tasks such as 
vision and games like Go, and human-like conversation as in ChatGPT, the path to strong AI, 
intelligent machines that are indistinguishable from the human mind (self-aware rather than 
mimicking), or even its possibility is subject of considerable debate. 

One of the remarkable features of the human brain is its power efficiency. The brain is estimated to 
have 85-100 billion neurons, with 100-1000 trillion connections, and a memory storage capacity of 2.5 
petabytes. Recent research suggests that the neurons in the brain may be computational units on their 
own. Beniaguev et al. (2021) discovered that cortical neurons can be approximated by a deep neural 
network (DNN) with 5-8 layers, indicating that the brain's computational capabilities may be greater 
than previously thought. Despite this, the brain operates on a mere 20 watts of power, equivalent to the 
energy consumption of a small lightbulb. 

In contrast, deep neural networks exhibit low energy efficiency. For example, GPT-3 was trained using 
~10,000 GPUs, each consuming 300 watts. As AI models become increasingly complex and larger, 
the demand for computing resources to process them increases exponentially. An analysis by OpenAI 
found that since 2012, the amount of computational power used in the largest AI training runs has been 
growing exponentially at a 3.4-month doubling time. This is in stark contrast to Moore's Law, which 
had a 2-year doubling period. The significant difference in power usage between the brain and deep 
neural networks highlights a major limitation in the current design of neural networks. However, it also 
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suggests that it may be possible to develop artificial intelligence models that do not require 
exponentially growing data sets or excessive energy consumption. 
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