Supplementary Material 3.

Cain III, J.W., J.H. Kay, S.G. Liley, and J.V. Gedir. Mule deer (*Odocoileus hemionus*) resource selection: trade-offs between forage and predation risk

Seasonal and diel resource selection models for mule deer

Table 3.1. Candidate models for assessing adult female mule deer (*Odocoileus hemionus*) habitat selection in the Gallinas Mountains, New Mexico, 2015–2016. All models include a random effect for individual deer.

Model Structure ^{a,b}
VRM ² + Water + Pred + Bio
$VRM^2 + Water + Pred + Prot$
VRM ² + Water + Visibility + Bio
VRM ² + Water + Visibility + Prot
$VRM^2 + Water + Pred \times Visibility + Bio$
$VRM^2 + Water + Pred \times Visibility + Prot$
$VRM^2 + Water + Pred \times Visibility + Pred \times Bio$
$VRM^2 + Water + Pred \times Visibility + Pred \times Prot$
$VRM^2 + Water + North + Pred + Bio$
$VRM^2 + Water + North + Pred + Prot$
VRM ² + Water + North + Visibility + Bio
$VRM^2 + Water + North + Visibility + Prot$
$VRM^2 + Water + North + Pred \times Visibility + Bio$
$VRM^2 + Water + North + Pred \times Visibility + Prot$
$VRM^2 + Water + North + Pred \times Visibility + Pred \times Bio$
$VRM^2 + Water + North + Pred \times Visibility + Pred \times Prot$
$VRM^2 + Water + North + VRM \times Visibility + Pred + Visibility + Bio$
$VRM^2 + Water + North + VRM \times Visibility + Pred + Visibility + Prot$
$VRM^2 + Water + North + VRM \times Visibility + Bio$
$VRM^2 + Water + North + VRM \times Visibility + Prot$
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Bio$
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Prot$
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Bio$
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Bio$
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Prot$
$VRM^2 + Water + North + Pred \times Bio$
$VRM^2 + Water + North + Pred \times Prot$
$VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Bio$

- $VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Prot$
- $VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Pred \times Bio$
- $VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$
- $VRM^2 + Water + Pred \times Visibility$
- $VRM^2 + Water + VRM \times Visibility + Pred \times Visibility$
- $VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility$

^a Covariate definitions: North = northness index; VRM = vector ruggedness measure; Visibility = horizontal visibility; Bio = edible forage biomass (g/m^2) ; Prot = digestible forage protein

 (g/m^2) ; Pred = predation risk; Water = distance to nearest water (m).

^b Models with quadratic terms also include the linear term (e.g., a^2 refers to $a + a^2$ as fixed effects). Models with interaction terms also include main effects (e.g., $a \times b$ refers to $a + b + a \times b$ as fixed effects).

Table 3.2. Five highest-ranking models predicting adult female mule deer (*Odocoileus hemionus*) landscape scale (2^{nd} order) habitat selection by season and diel period from mixed effects logistic regression models in the Gallinas Mountains, New Mexico, 2015–2016. Model structures, number of parameters (*K*), Akaike's Information Criterion for small sample size (AIC_c), difference in AIC_c value between current model and top model (Δ AIC_c), AIC_c weight (*wi*), and rho value from k-fold cross-validation (of top model) are given All models include a random effect for individual deer.

Model Structure ^{a,b}	K	AICc	ΔAIC_{c}	Wi	K-fold
Spring Day (<i>n</i> = 10242) ^c					
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	13	23158.1	0.0	0.851	0.99
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Prot$	12	23162.2	4.1	0.108	
$VRM^2 + Water + North + Pred \times Visibility + Pred \times Prot$	11	23164.2	6.1	0.041	
$VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	12	23196.2	38.1	0.000	
$VRM^2 + Water + Pred \times Visibility + Pred \times Prot$	10	23202.2	44.1	0.000	
Spring Crepuscular (<i>n</i> = 7206)					
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Prot$	12	22971.3	0.0	0.728	0.98
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	13	22973.3	2.0	0.271	
$VRM^2 + Water + North + Pred \times Visibility + Pred \times Prot$	11	22985.7	14.3	0.001	
$VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	12	23004.6	33.3	0.000	
$VRM^2 + Water + Pred \times Visibility + Pred \times Prot$	10	23017.1	45.8	0.000	
Spring Night (<i>n</i> = 11556)					
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Prot$	12	23018.9	0.0	0.731	0.98
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	13	23020.9	2.0	0.269	
$VRM^2 + Water + North + Pred \times Visibility + Pred \times Prot$	11	23033.4	14.4	0.001	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Prot$	12	23043.0	24.0	0.000	
$VRM^2 + Water + North + Pred \times Visibility + Prot$	10	23051.1	32.1	0.000	
Summer Day (<i>n</i> = 6894)					
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Prot$	11	45217.1	0.0	0.687	0.99
$VRM^2 + Water + North + VRM \times Visibility + Prot$	10	45219.5	2.4	0.210	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	13	45220.9	3.8	0.102	

$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Bio$	11	45243.2	26.1	0.000	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Bio$	12	45245.1	28.0	0.000	
Summer Crepuscular (<i>n</i> = 9070)					
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	13	21921.9	0.0	0.834	0.94
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Prot$	12	21925.1	3.2	0.166	
$VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	12	21939.2	17.4	0.000	
$VRM^2 + Water + North + Pred \times Visibility + Pred \times Prot$	11	21941.2	19.3	0.000	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Prot$	12	21949.8	27.9	0.000	
Summer Night (<i>n</i> = 11890)					
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Prot$	12	22020.3	0.0	0.729	0.93
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	13	22022.3	2.0	0.270	
$VRM^2 + Water + North + Pred \times Visibility + Pred \times Prot$	11	22036.6	16.4	0.000	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Prot$	12	22038.2	17.9	0.000	
$VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Pred \times Visibility$	12	22046.1	25.9	0.000	
Winter Day (<i>n</i> = 11884)					
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Bio$	12	40284.2	0.0	0.526	0.91
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	13	40285.7	1.5	0.251	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Bio$	13	40285.9	1.7	0.222	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Prot$	12	40297.6	13.4	0.001	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Bio$	12	40301.3	17.1	0.000	
Winter Crepuscular ($n = 12642$)					
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	13	40161.7	0.0	0.982	0.99
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Prot$	12	40169.8	8.0	0.018	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Bio$	13	40182.3	20.5	0.000	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Prot$	12	40182.4	20.7	0.000	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Bio$	12	40183.0	21.2	0.000	
Winter Night $(n = 26724)$					

$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Bio$	12	39952.0	0.0	0.632	0.92
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Bio$	13	39953.1	1.1	0.367	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	13	39964.8	12.8	0.001	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility$	12	39970.5	18.5	0.000	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Bio$	12	39972.7	20.7	0.000	

^a Covariate definitions: North = northness index; VRM = vector ruggedness measure; Visibility = horizontal visibility; Bio = edible forage biomass (g/m²); Prot = digestible forage protein (g/m²); Pred = predation risk; Water = distance to nearest water (m). ^b Models with quadratic terms also include the linear term (e.g., a² refers to a + a² as fixed effects). Models with interaction terms also include main effects (e.g., a × b refers to a + b + a × b as fixed effects).

^c Number of GPS locations.

	95% Confidence Limits			
Parameter	Estimate	Lower	Upper	
	Spring D	ay		
VRM	0.70	0.64	0.75	
VRM ²	-0.21	-0.24	-0.17	
Water	-0.27	-0.30	-0.23	
North	-0.11	-0.15	-0.08	
Visibility	-0.24	-0.32	-0.16	
Pred	0.12	0.05	0.19	
Prot	0.34	0.30	0.37	
VRM × Visibility	0.08	0.01	0.16	
Visibility × Pred	-0.18	-0.33	-0.04	
$Pred \times Prot$	-0.33	-0.42	-0.24	
S	pring Crept	ıscular		
VRM	0.70	0.65	0.75	
VRM ²	-0.21	-0.24	-0.17	
Water	-0.28	-0.32	-0.25	
North	-0.10	-0.14	-0.07	
Visibility	-0.23	-0.31	-0.15	
Pred	0.15	0.09	0.22	
Prot	0.33	0.29	0.36	
VRM × Visibility	0.10	0.02	0.17	
$Pred \times Prot$	-0.30	-0.37	-0.23	
	Spring Ni	ght		
VRM	0.69	0.64	0.75	
VRM ²	-0.22	-0.26	-0.18	
Water	-0.27	-0.31	-0.24	
North	-0.10	-0.14	-0.07	
Visibility	-0.24	-0.32	-0.16	
Pred	0.04	-0.03	0.11	
Prot	0.33	0.30	0.37	
VRM × Visibility	0.05	-0.02	0.12	
$Pred \times Prot$	-0.19	-0.26	-0.12	
	Summer I	Day		
VRM	0.68	0.64	0.72	
VRM ²	-0.24	-0.27	-0.21	

Table 3.3. Scaled parameter estimates and 95% confidence limits for landscape scale (2nd order) habitat selection of adult female mule deer (*Odocoileus hemionus*) by season and diel period in the Gallinas Mountains, New Mexico, 2015–2016.

Water	-0.14	-0.16	-0.11
North	-0.20	-0.22	-0.18
Visibility	-0.25	-0.30	-0.20
Pred	-0.02	-0.05	0.01
Prot	0.07	0.04	0.09
VRM × Visibility	0.10	0.05	0.15
S	ummer Crepu	ıscular	
VRM	0.75	0.69	0.80
VRM ²	-0.31	-0.35	-0.26
Water	-0.13	-0.16	-0.09
North	-0.08	-0.11	-0.04
Visibility	-0.51	-0.60	-0.42
Pred	0.01	-0.02	0.02
Prot	0.69	0.60	0.79
VRM × Visibility	-0.05	-0.14	0.03
Visibility \times Pred	0.04	0.01	0.08
$Pred \times Prot$	-0.14	-0.20	-0.08
	Summer Ni	ght	
VRM	0.75	0.69	0.81
VRM ²	-0.27	-0.31	-0.23
Water	-0.11	-0.15	-0.08
North	-0.09	-0.13	-0.06
Visibility	-0.50	-0.59	-0.41
Pred	-0.01	-0.03	0.01
Prot	0.58	0.49	0.67
VRM × Visibility	0.003	-0.08	0.09
$\operatorname{Pred} \times \operatorname{Prot}$	-0.12	-0.17	-0.08
	Winter Da	ay	
VRM	0.89	0.84	0.93
VRM ²	-0.32	-0.35	-0.29
Water	-0.23	-0.25	-0.20
North	-0.27	-0.29	-0.24
Visibility	-0.53	-0.59	-0.47
Pred	-0.16	-0.19	-0.12
Bio	0.16	0.11	0.21
VRM × Visibility	-0.07	-0.13	-0.01
Visibility \times Pred	0.18	0.13	0.23

Winter Crepuscular

VRM	0.86	0.82	0.91
VRM ²	-0.28	-0.31	-0.25
Water	-0.23	-0.26	-0.20
North	-0.28	-0.30	-0.25
Visibility	-0.65	-0.71	-0.59
Pred	-0.56	-0.74	-0.39
Prot	0.35	0.17	0.54
VRM × Visibility	-0.06	-0.12	-0.001
Visibility \times Pred	0.11	0.04	0.17
$Pred \times Prot$	-0.53	-0.74	-0.31
	Winter Nig	ght	
VRM	0.88	0.84	0.92
VRM ²	-0.31	-0.34	-0.28
Water	-0.23	-0.26	-0.20
North	-0.27	-0.30	-0.25
Visibility	-0.61	-0.68	-0.55
Pred	-0.14	-0.17	-0.11
Bio	0.17	0.12	0.22
BIO	0.17	0.12	0.22
$VRM \times Visibility$	0.17 -0.09	-0.15	-0.03

^a Covariate definitions: North = northness index; VRM = vector ruggedness measure; Visibility = horizontal visibility; Bio = edible forage biomass (g/m^2) ; Prot = digestible forage protein (g/m^2) ; Pred = predation risk; Water = distance to nearest water (m).

Table 3.4. Five highest-ranking models predicting adult female mule deer (*Odocoileus hemionus*) within home range scale (3^{rd} order) habitat selection by season and diel period from mixed effects logistic regression models in the Gallinas Mountains, New Mexico, 2015–2016. Model structures, number of parameters (*K*), Akaike's Information Criterion for small sample size (AIC_c), difference in AIC_c value between current model and top model (Δ AIC_c), AIC_c weight (*w_i*), and rho value from k-fold cross-validation (of top model) are given. All models include a random effect for individual deer.

Model Structure ^{a,b}	K	AICc	ΔAIC _c	Wi	K-fold
Spring Day					
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Prot$	12	22689.0	0.0	0.612	0.91
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	13	22690.3	1.2	0.327	
$VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	12	22693.6	4.6	0.061	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Prot$	12	22711.1	22.0	0.000	
$VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Prot$	11	22714.2	25.1	0.000	
Spring Crepuscular					
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Prot$	12	22803.2	0.0	0.710	0.94
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	13	22805.2	2.0	0.266	
$VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	12	22810.0	6.8	0.024	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Prot$	12	22833.5	30.3	0.000	
$VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Prot$	11	22837.8	34.6	0.000	
Spring Night					
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	13	22671.5	0.0	0.604	0.96
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Prot$	12	22672.5	0.9	0.378	
$VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	12	22678.6	7.1	0.017	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Prot$	12	22738.9	67.4	0.000	
$VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Prot$	11	22744.6	73.1	0.000	
Summer Day					
$VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	12	22530.0	0.0	0.750	0.91
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Prot$	12	22532.2	2.2	0.247	

$VRM^2 + Water + Pred \times Visibility + Pred*Prot$	10	22541.7	11.7	0.002	
$VRM^2 + Water + North + Pred \times Visibility + Pred \times Prot$	11	22543.1	13.0	0.001	
$VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Prot$	11	22558.8	28.8	0.000	
Summer Crepuscular					
$VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	12	22515.9	0.0	0.724	0.84
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Prot$	12	22518.2	2.2	0.237	
$VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Prot$	11	22522.4	6.5	0.028	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Prot$	12	22524.2	8.3	0.012	
$VRM^2 + Water + North + VRM \times Visibility + Pred + Visibility + Prot$	11	22541.2	25.3	0.000	
Summer Night					
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Prot$	12	22532.3	0.0	0.730	0.87
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	13	22534.3	2.0	0.270	
$VRM^2 + Water + Pred \times Visibility + Pred \times Prot$	10	22555.4	23.1	0.000	
$VRM^2 + Water + North + Pred \times Visibility + Pred \times Prot$	11	22556.1	23.8	0.000	
$VRM^2 + Water + VRM \times Visibility + Pred \times Visibility + Prot$	11	22565.6	33.3	0.000	
Winter Day					
$VRM^2 + Water + North + VRM \times Visibility + Bio$	10	42423.4	0.0	0.625	0.99
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Bio$	13	42425.9	2.5	0.176	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Bio$	12	42426.4	3.0	0.139	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Prot$	13	42428.1	4.7	0.060	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Prot$	12	42442.5	19.1	0.000	
Winter Crepuscular					
$VRM^2 + Water + North + VRM \times Visibility + Bio$	10	42576.8	0.0	0.319	0.78
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Bio$	12	42577.1	0.3	0.275	
$VRM^2 + Water + North + VRM \times Visibility + Pred * Bio$	12	42578.3	1.5	0.152	
$VRM^2 + Water + North + VRM \times Visibility + Pred + Visibility + Bio$	11	42578.4	1.6	0.147	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Bio$	13	42579.0	2.2	0.107	

Winter Night

$VRM^2 + Water + North + VRM \times Visibility + Pred \times Bio$	12	42567.2	0.0	0.690	0.98
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Pred \times Bio$	13	42568.9	1.7	0.295	
$VRM^2 + Water + North + VRM \times Visibility + Pred \times Visibility + Bio$	12	42575.6	8.4	0.011	
$VRM^2 + Water + North + VRM \times Visibility + Pred + Visibility + Bio$	11	42578.2	11.0	0.003	
$VRM^2 + Water + North + VRM \times Visibility + Bio$	10	42581.7	14.5	0.001	

^a Covariate definitions: North = Northness index; VRM = vector ruggedness measure; Visibility = horizontal visibility; Bio = edible forage biomass (g/m^2) ; Prot = digestible forage Protein (g/m^2) ; Pred = Predation risk; Water = distance to nearest Water (m).

^b Models with quadratic terms also include the linear term (e.g., a^2 refers to $a + a^2$ as fixed effects). Models with interaction terms also include main effects (e.g., $a \times b$ refers to $a + b + a \times b$ as fixed effects).

	95% Confidence Limits			
Parameter	Estimate	Lower	Upper	
	Spring Da	ay		
VRM	0.71	0.65	0.77	
VRM ²	-0.28	-0.32	-0.24	
Water	-0.12	-0.16	-0.08	
North	-0.04	-0.08	-0.01	
Visibility	0.17	0.10	0.24	
Pred	0.17	0.09	0.25	
Prot	0.29	0.25	0.32	
VRM × Visibility	0.36	0.30	0.43	
$Pred \times Prot$	-0.17	-0.23	-0.10	
S	pring Crepu	scular		
VRM	0.68	0.62	0.74	
VRM ²	-0.25	-0.29	-0.22	
Water	-0.13	-0.17	-0.09	
North	-0.05	-0.08	-0.01	
Visibility	0.17	0.10	0.24	
Pred	0.30	0.22	0.39	
Prot	0.30	0.26	0.33	
$VRM \times Visibility$	0.35	0.28	0.42	
$Pred \times Prot$	-0.21	-0.28	-0.14	
	Spring Nig	ght		
VRM	0.71	0.65	0.77	
VRM ²	-0.25	-0.29	-0.22	
Water	-0.12	-0.16	-0.08	
North	-0.05	-0.09	-0.02	
Visibility	0.20	0.13	0.27	
Pred	0.27	0.19	0.35	
Prot	0.30	0.27	0.34	
VRM × Visibility	0.41	0.34	0.48	
Visibility \times Pred	0.08	-0.01	0.17	
$\operatorname{Pred} \times \operatorname{Prot}$	-0.27	-0.34	-0.20	
	Summer D	Day		
VRM	0.12	0.06	0.18	
VRM ²	-0.03	-0.07	0.01	

Table 3.5. Scaled parameter estimates and 95% confidence limits for within home range (3rd order) habitat selection of adult female mule deer (*Odocoileus hemionus*) by season and diel period in the Gallinas Mountains, New Mexico, 2015–2016.

Water	0.08	0.04	0.12
Visibility	-0.20	-0.29	-0.11
Pred	-0.02	-0.04	0.00
Prot	-0.33	-0.42	-0.24
VRM × Visibility	-0.16	-0.25	-0.07
Visibility × Pred	-0.04	-0.09	0.01
Pred × Prot	-0.17	-0.24	-0.11
Su	mmer Crept	ıscular	
VRM	0.09	0.03	0.15
VRM ²	-0.03	-0.07	0.01
Water	0.09	0.05	0.13
Visibility	-0.24	-0.33	-0.15
Pred	-0.01	-0.04	0.01
Prot	-0.36	-0.45	-0.26
VRM × Visibility	-0.22	-0.31	-0.13
Visibility × Pred	0.03	-0.01	0.07
$Pred \times Prot$	-0.09	-0.15	-0.03
	Summer Ni	ght	
VRM	0.12	0.06	0.18
VRM ²	-0.06	-0.10	-0.02
Water	0.08	0.04	0.12
North	0.02	-0.01	0.06
Visibility	-0.23	-0.31	-0.14
Pred	-0.02	-0.05	0.00
Prot	-0.32	-0.41	-0.22
VRM × Visibility	-0.20	-0.29	-0.11
$Pred \times Prot$	-0.20	-0.25	-0.14
	Winter Da	ay	
VRM	0.37	0.33	0.42
VRM ²	-0.13	-0.16	-0.11
Water	-0.07	-0.10	-0.04
North	-0.19	-0.22	-0.16
Visibility	-0.38	-0.44	-0.32
Bio	0.11	0.07	0.16
VRM × Visibility	-0.16	-0.22	-0.10
W	/inter Crepu	scular	
VRM	0.38	0.33	0.42
VRM ²	-0.14	-0.17	-0.11
Water	-0.06	-0.09	-0.03

North	-0.18	-0.21	-0.16
Visibility	-0.34	-0.4	-0.28
Bio	0.10	0.06	0.14
VRM × Visibility	-0.15	-0.21	-0.10
Winter Night			
VRM	0.35	0.31	0.40
VRM ²	-0.12	-0.14	-0.09
Water	-0.05	-0.08	-0.02
North	-0.18	-0.2	-0.15
Visibility	-0.39	-0.45	-0.33
Pred	0.10	0.06	0.15
Bio	0.06	0.02	0.11
VRM × Visibility	-0.13	-0.19	-0.07
$Pred \times Bio$	0.09	0.04	0.14

^a Covariate definitions: North = Northness index; VRM = vector ruggedness measure; Visibility = horizontal visibility; Bio = edible forage biomass (g/m²); Prot = digestible forage Protein (g/m²); Pred = Predation risk; Water = distance to nearest Water (m).

Figure 3.1. Manly selection index and 95% confidence limits for female mule deer (*Odocoileus hemionus*) selection of vegetation types by season (spring [green], summer [red], and winter [blue]) and diel period in the Gallinas Mountains, New Mexico, 2015-2016.

Figure 3.2. Predicted relative probability of selection by mule deer at the landscape scale in relation to forage protein content (g/m2) as a function of mountain lion predation risk during A) spring – crepuscular, B) spring -day, C) spring – night, D) summer – crepuscular, E) summer – night, and F) winter crepuscular diel periods in the Gallinas Mountains, New Mexico, 2015–2016. Confidence bands are 90% confidence intervals. The relationship between predicted relative probability of selection and forage protein content are plotted for three levels of mountain lion predation risk (mean predation risk [mean], low predation risk [mean - 1 standard deviation SD] and high predation risk [mean +1 SD]). Note that the axes for the relative probability of selection depicted on each panel may be on different scales.

Figure 3.3. Predicted relative probability of selection by mule deer in relation to mountain lion predation risk as a function of horizontal visibility at the landscape scale during A) spring – day, B) summer – crepuscular, C) winter – crepuscular, D) winter – day, and E) winter – night, diel periods in the Gallinas Mountains, New Mexico, 2015–2016. Confidence bands are 90% confidence intervals. The relationship between predicted relative probability of selection and mountain lion predation risk is plotted for three levels of horizontal visibility (mean visibility [mean], low visibility [mean - 1 standard deviation SD] and high visibility [mean +1 SD]). Note that the axes for the relative probability of selection depicted on each panel may be on different scales.

Figure 3.4. Predicted relative probability of selection by mule deer in relation to horizontal visibility as a function of terrain ruggedness at the landscape scale during A) spring - crepuscular, B) spring – day, C) spring – night, D) summer – crepuscular, E) summer – day, F) summer – night, G) winter – crepuscular, H) winter – day, and I) winter – night diel periods in the Gallinas Mountains, New Mexico, 2015–2016. Confidence bands are 90% confidence intervals. The relationship between predicted relative probability of selection and horizontal visibility is plotted for three levels of terrain ruggedness (mean ruggedness [mean], low ruggedness [mean - 1 standard deviation SD] and high ruggedness [mean +1 SD]). Note that the axes for the relative probability of selection depicted on each panel may be on different scales.

Figure 3.5. Predicted relative probability of selection by mule deer in relation to forage protein content (g/m^2) as a function of mountain lion predation risk at the within home range scale during A) spring - crepuscular, B) spring – day, C) spring - night, D) summer – crepuscular, E) summer – day, F) summer – night diel periods in the Gallinas Mountains, New Mexico, 2015–2016. Confidence bands are 90% confidence intervals. The relationship between predicted relative probability of selection and horizontal visibility is plotted for three levels of terrain ruggedness [mean], low ruggedness [mean - 1 standard deviation SD] and high ruggedness [mean +1 SD]). Note that the axes for the relative probability of selection depicted on each panel may be on different scales.

Figure 3.6. Predicted relative probability of selection by mule deer in relation to horizontal visibility as a function of terrain ruggedness at the within home range scale during A) spring - crepuscular, B) spring – day, C) spring - night, D) summer - crepuscular, E) summer – day, F) summer – night, G) winter – crepuscular, H) winter – day, and I) winter – night diel periods in the Gallinas Mountains, New Mexico, 2015–2016. Confidence bands are 90% confidence intervals. The relationship between predicted relative probability of selection and horizontal visibility is plotted for three levels of terrain ruggedness (mean ruggedness [mean], low

ruggedness [mean - 1 standard deviation SD] and high ruggedness [mean +1 SD]). Note that the axes for the relative probability of selection depicted on each panel may be on different scales.