
Supplementary Material

Appendix A: Brief background of the model

eqs(1) and (2)

(a) Spruce budworm model [3, 4, 15, 45]
The Spruce budworm infestation model provides a real example of oc-
casional outbreak of infestation in Spruce forests in North America,
which in particular defoliate balsam fir trees. The model provides a
good example to understand the oscillatory dynamics of interacting
ecosystem of forest trees and insects. The main features of this model
are:

(i) Leaves of the trees supply food and coverage for the budworm (to
hide from birds),

(ii) Birds feed on budworm (if exist in large number) and other sources
of food. So, birds population are assumed to be constant.

The model rate equation for the budworms population (N) considered
here has the dimensionless from, eq.(1), viz.,

d

dτ
N(τ) = N(τ)− N2(τ)

K
− F N2(τ)/

(
N2(τ) +B2

)
(A.1)

≡ T1 − T2 − T3

Here, τ = rt is the normalised time, with r the (linear) birth rate of
budworms, k is the saturation population density related to density of
food (foliage) on the trees in the absence of birds, F is the predation
population and B is the measure of threshold for the budworm popu-
lation. The function f(N) = F N2(τ)/ (N2(τ) +B2) (called sigmoidal
curve) represents the predation rate generated by birds subject to a
maximum value, which satisfies the following conditions:

1. If N is small, f(N) is close to zero as the birds will choose other
types of prey,

2. f(N) grows as the budworms become very large, and

3. f(N) reaches some maximum value, if N is very large.
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Consideration of the first term (where T2,3 = 0) in (A.1) leads to
dN

dτ
= N , i.e N(t) ∝ ert which represents the growth of budworms

at low density in absence of predators (so, death rate by normal causes

is almost zero). The second term in (A.1), T2 =
N2

K
represents (pre-

mature) death rate due to finite resources. The competition between
the two terms T1 and T2 (in absence of third term, T3 = 0) forms what

is known as basic logistic equation,
dN

dτ
= N(1− N

K
), whose solution,

N(t) = c1K/(c1+Ke−rt) with c1 is constant, is called the logistic func-
tion. The general eq.(A.1) in its dimensionless form with all terms
T1,2,3 present has three dimensionless parameters, K,F,B. Analytical
and computational investigation of the bistable behaviour according
to (A.1), in both steady and transient regions are given in details in
[3, 4, 15, 45].

(b) The Thomas reaction model [4, 16], [45]-[47]
Enzymes are types of proteins that work as catalysts in chemical re-
actions in biological systems. They react effectively with definite com-
ponents, called substrates, at very low concentrations. An example is,
the haemoglobin substance in red blood cells that is composed of en-
zyme and oxygen together it forms a substrate. Most basic functions of
biological membranes is to define a boundary within or between cells.
Celluar processes depend on membrane ability to separate different ar-
eas of components, while allowing for regulated biological transport
processes (such as, activators or inhibitors in a reaction) to occur. An
artificial enzyme membranes can be a model for biological membranes
having bound enzymes, as well, provide a good model to study certain
enzyme- staining reactions. Specifically, in diffusion cells [16], the ar-
tificial enzyme membrane separates into two compartments containing
solutions of substrates (product and effector). Both solutions enter the
membrane as ”inputs” and the output solution flux is then analysed.
In the Thomas reaction mechanism model [4], the enzyme membrane
involves two substrates, oxygen and uric acid of concentrations v and
u, respectively. In dimensionless form, the rate equations are given as
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[4],

u· = a− u− lR(u, v) (A.2a)

v· = γ(b− v)− lR(u, v) (A.2b)

with,

R(u, v) =
uv

1 + u+ ku2
(A.2c)

The constants a, b, γ, l, k are real and positive: a and γb are the con-
stant supplied rates for u, v, respectively. The terms (−u) in (A.2a)
and (−γv) in (A.2b) describe linear damping processes of both concen-
trations. Both concentrations u, v are used in the reaction at a rate
lR(u, v), where the form of R(u, v) in (A.2c) exhibits substrate inhibi-
tion, with (k) is a measure of intensity of inhibition. Analytical and
computational investigations of the model eqs.(A.2) have been given in
detail in both transient and steady state regimes regarding the bistable
behaviour in [4, 14].

Appendix B: Euler’s Computational method

for fractional differential equations

The fractional Euler’s numerical method [28] to solve the FDE,

D(α)y(t) = f(t, y(t)), y(0) = yo, 0 < α ≤ 1, t > 0

is summarised as follows:

(1) Subdivide the interval t ∈ (0, a) into N-sub-intervals of equal width
h = a/N which gives with ti = ih, i = 0, 1 . . . , N with to = 0.

(2) For i = 1, 2, . . . , N, the program evaluate the formula wi = wi−1 +
hαf(ti−1, wi)/Γ(α+1), in the Caputo’s derivative case, and wi = wi−1+
ehα/(1−α)f(ti−1, wi)/(1− α), in the Caputo- Fabrizio case.

(3) A set of points (ti, wi), i = 0, 1, .., N, is generated, where y(ti) = wi with
a varied accuracy ϵ = 10−4 to 10−3.
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As in [48], the accuracy differs according to the α values. In general, the 
truncated error is of order (D(2α)y(t))(ξi).h

2α(Γ(2α+ 1)). This was neglected 
for small step size. Odibat et al. [48], also, developed Trapezoidal method for 
fractional differential equations (as well as Taylor’s formula). The error 
according to Euler’s method was enough in our case and can be evaluated in a 
shorter evaluation-time.
The sample code of programmes of the numerical solutions of the FDEs, 
eq.(3),(4) are given by:
http://www.kau.edu.sa/GetFile.aspx?id=302674&fn=model1.pdf
http://www.kau.edu.sa/GetFile.aspx?id=302675&fn=model2.pdf




